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1.   Summary of Major Technical Results 

This section summarizes some of the most significant technical results 
found from the work under this grant on the understanding and practical 
modeling of combustion in turbulent flows. 

• A new measurement technique was developed for experimental investigation 
of the universal, four-dimensional, spatio-temporal, small-scale structure of 
large Schmidt number conserved scalar mixing in turbulent flows. 
Measurements were obtained via laser induced fluorescence imaging in 
conjunction with continuous high-speed acquisition of gigabyte-sized data 
sets, yielding fully-resolved three- and four-dimensional data for the space- 
and time-varying conserved scalar field £(x,0 and the associated scalar energy 
dissipation rate field V£-V£(x,f) at the small scales of a turbulent flow. 

• Measurements were obtained at local outer-scale Reynolds numbers Re5 

between 2,600 and 5,000, and local Taylor-scale Reynolds numbers Rex ranging 
from 38 to 52. The resolution achieved reaches below the local strain-limited 
molecular diffusion scale A,D in all three spatial dimensions as well as in time. 

• The resulting four-dimensional data sets, each comprised of over 3 billion 
individual point measurements, are simultaneously space- and time- 
differentiable. Data are in the form of three-dimensional (2563) spatial data 
volumes which clearly reveal that the entire scalar dissipation field is 
composed of locally one-dimensional layer-like structures formed into 
complex patterns by the repeated stretching and folding action of the 
underlying turbulent flow. 

• Numerous structural and statistical features of this small-scale mixing process 
were investigated, including probability density functions and spectra, which 
show evidence for weak anisotropy even at the small scales. 

• The three-dimensional spatial nature of the data allows the first determination 
of the three-dimensional scalar energy spectrum £^(k). One-dimensional 
spatial spectra obtained from these permit comparisons with Batchelor's 
theory for the high-wavenumber form of the spectrum, and the simultaneous 
availability of temporal information allows comparisons of temporal and 
spatial spectra. 

• Wavelet analyses motivated by the high degree of internal small-scale 
intermittency that results from localization of scalar gradients in the layer-like 
structures yields wavelet spectra and gradient length scale distributions. The 
latter determines the molecular diffusion layer thickness scaling X,D = 
A • 5 Ref3'4- S<ru2, with the median value found to be (A) » 12 and with the 
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thickest layers being approximately three times this size. 

• The distribution of scalar dissipation layer separations shows lognormal 
scaling at small separations and a -3 power-law scaling at large separations. 

Results from these detailed imaging studies of passive scalar mixing in 
turbulent flows have led to a physically-based formulation relating the mixing 
of conserved scalar fields by the underlying turbulent flow field to the local 
chemical state. The basis underlying this Strained Dissipation and Reaction 
Layer (SDRL) formulation is the observation that locally one-dimensional layer- 
like structures dominate the scalar energy dissipation fields in turbulent 
reacting flows regardless of the degree of chemical nonequilibrium. 

Results obtained when this strained dissipation and reaction layer formulation 
is applied to imaging measurements of conserved scalar fields in turbulent 
flows for conditions ranging from near equilibrium to deep nonequilibrium 
demonstrate remarkable resemblances with direct PLIF imaging 
measurements of chemical species under similar combustion conditions. The 
SDRL formulation inherently produces a predominance of thin (flamelet) 
mass fraction and reaction rate fields under conditions of relatively weak 
chemical nonequilibrium, and the natural emergence and dominance of broad 
(distributed) species concentration and reaction rate fields for increasing 
equilibrium departures, providing a physical and theoretical framework that 
reconciles these two widely disparate views of turbulent combustion within a 
single model. 

A detailed examination of the validity of the SDRL model compared chemical 
species concentration fields predicted by the SDRL formulation, together 
with those from the equilibrium and flamelet models, with results from direct 
numerical simulations (DNS) for Damköhler numbers ranging from near 
equilibrium to deep nonequilibrium. Results showed substantial 
improvements by the SDRL model over both the equilibrium and flamelet 
models, especially under conditions of greatest chemical nonequilibrium. 

1.1      Introduction and Overview 

Work under this AFOSR grant in the Gas Dynamics Laboratories at The 
University of Michigan involves a combination of experimental, theoretical, and 
numerical efforts with the following three major objectives: 

(i) to develop and implement new, high-resolution, multi-dimensional, 
quantitative, imaging capabilities for obtaining direct experimental 
measurements of the molecular mixing and chemical reaction 
processes in turbulent flows, 
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(ii) to use these new measurement techniques to experimentally 
investigate the essential physical characteristics of molecular mixing 
and chemical reactions in turbulent flows, and 

(Hi) to incorporate results from these new experimental measurements 
into practical models of the molecular mixing, chemical reaction, and 
local extinction processes in reacting turbulent flows of interest for 
air-breathing propulsion systems. 

This Final Report summarizes new insights into the structure and 
modeling of reacting turbulent flows at the molecular diffusion and chemical 
reaction scales of the flow obtained during the course of this work. These 
results have been based on two primary parallel lines on investigation. 

The first has involved development and application of a new technique 
for obtaining fully-resolved four-dimensional spatio-temporal imaging 
measurements of the small scale structure of conserved scalar mixing in 
turbulent shear flows. The resulting data characterize the universal high- 
Reynolds number structure and dynamics of mixing, yielding detailed results for 
Sc » 1, and comparing with lower-dimensional measurements obtained for Sc~ 
1. This part of our work has shown that essentially all of the molecular mixing in 
turbulent shear flows is concentrated on thin, sheet-like, strained laminar 
diffusion layers having a locally self-similar and universal internal structure. We 
have also shown why the underlying vorticity field is more complex, consisting 
of both line-like and sheet-like structures, as well as structures undergoing a 
transition between these two asymptotic states, whereas the scalar dissipation 
rate field can sustain only sheet-like structures. This comparative simplicity in 
the scalar dissipation field allows for relatively simple models of the mixing at 
the molecular scales in turbulent shear flows, and for a new approach for 
relating the progress of complex chemical reactions to the molecular mixing 
process. Results from this part of our work are summarized in §2 of this Final 
Report. 

The second line of investigation has resulted directly from the 
observation of this structural simplicity at the fine scales of scalar mixing in 
turbulent shear flows. This has led to the development of new formulation that 
relates the local state of nonequilibrium chemistry to the local state of molecular 
mixing in the underlying conserved scalar field. Termed the "strained 
dissipation and reaction layer" (SDRL) formulation, this approach is more widely 
applicable than the "flamelet" model. Results obtained to date show that the 
SDRL formulation produces thin "flamelet-like" chemical species fields under 
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conditions of relatively low nonequilibrium, as well as the natural emergence and 
eventual dominance of broad "distributed reaction zones" under conditions of 
deeper nonequilibrium. OH mass fraction fields produced via the SDRL 
formulation from experimental conserved scalar fields show remarkable 
resemblances to OH PLIF measurements under similar conditions. 
Furthermore, DNS test cases also show that the SDRL formulation is more 
accurate than the flamelet model, especially under conditions of deep 
nonequilibrium. This new formulation appears to allow accurate predictions of 
turbulent combustion chemistry under conditions ranging from near 
equilibrium to deep nonequilibrium. 

In addition to this Final Report and our previous Annual Reports, results 
have also been described in several technical articles in the refereed archival 
literature1, in several monograph articles, and conference proceedings and 
presentations2. 

Dahm, Southerland & Buch (199D Physics of Fluids A 3, 1115-1127. 
Tryggvason & Dahm (1990) Combustion & Flame 83, 207-220. 
Chang, Dahm & Tryggvason (199D Physics of Fluids A 3, 1300-1311. 
Southerland, Porter, Dahm & Buch (1991) Physics of Fluids A 3, 1385-1392. 
Dahm, Su & Southerland (1992) Physics of Fluids A 4, 2191-2206. 
Buch, Dahm, Dibble & Barlow (1992) Proc. 24th Int'l. Symp. Comb. 295-301. 
Dahm & Bish (1993) Turbulence and Molecular Processes in Combustion, Elsevier Publ. 
Everett, Driscoll, Dahm & Feikema (1993) Combustion & Flame, accepted for publ.. 
Dahm. Tryggvason & Zhuang (1993) SI AM J. Appl. Math., in review. 
Southerland. Dahm & Dowling (1994) A1AA Paper No. 94-0820, AIAA, Washington, D.C.. 
Bish & Dahm (1994) AIAA Paper No. 94-0100, AIAA, Washington, D.C. 
Southerland, Frederiksen, Dahm & Dowling (1994) Chaos, Solitons & Fractals 4, 1057-1089. 
Bish & Dahm (1994)   Proc. 25th Int'l. Symposium on Combustion, in press. 
Bish & Dahm (1995) AIAA Paper No. 95-0803, AIAA, Washington, D.C. 
Buch & Dahm (1995) Journal of Fluid Mechanics in review. 

Dahm, Southerland & Buch (1991) Applications of Laser Techniques to Fluid Mechanics. R. 
Adrian, Ed., Springer Verlag, Berlin. 

Dahm &.  Buch (1991) Chemical Reactions and  Physical Processes in Turbulent Flows. J. 
Hunt, Ed., Cambridge University Press. 

Buch & Dahm (1992) Fine Scale Structure of Conserved Scalar Mixing in Turbulent Shear 
Flows. Sc » L. Sc = L and Implication for Reacting Flows.   University of Michigan Report 
No. 026779-5. 

Dahm (1992) Proceedings of the  13th Symposium on Turbulence. University of Missouri- 
Rolla, Rolla, MO. 

Dahm (1992) Turbulence and Molecular Processes in Combustion. T Takeno, Ed., Elsevier. 
Bish, Dahm & Dowling (1993) Proceedings of the 1993 Fall Meeting of the Western States 

Section of the Combustion Institute. The Combustion Institute, Pittsburgh. 
Southerland & Dahm (1994) A Four-Dimensional Experimental Study of Conserved Scalar 

Mixing in Turbulent Flows. University of Michigan Report No. 026779-12. 
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2.   Structure of Conserved Scalar Mixing in Turbulent Flows 

1.  Introduction 

The mixing of two or more fluids in turbulent shear flows represents one 
of the most widely encountered and technically important classes of problems 
in the fluid sciences. Applications range from the development of new 
aeropropulsion systems to the reduction of trace species pollutant emissions 
from industrial combustion processes. Despite the importance of this class of 
problems, no broadly applicable theory for treating flows involving turbulent 
mixing currently exists. Often the turbulent mixing process is of primary 
interest for chemically reacting systems, as in the examples above, where the 
outcome of a potentially complex set of multi-step chemical reaction kinetics 
can depend crucially on details of the mixing process at the molecular scales. 
This is certainly true for systems with high mixing rates that operate far from 
chemical equilibrium, where the coupling between the reaction chemistry and 
the mixing state of the flow can be very complex. Development of accurate 
predictive techniques for dealing with turbulent reacting flow problems of this 
type requires a physical understanding of the molecular mixing process at the 
small scales of turbulent shear flows. 

It is believed that the quasi-deterministic large scale structures in 
turbulent shear flows control the entrainment properties of the flow, and that 
these large structures differ from one flow to another. In contrast, the structure 
and dynamics of the small scales are believed to be at least quasi-universal, 
satisfying Reynolds number asymptotics and displaying certain universal scaling 
properties. Studies of the large scale structure and entrainment properties of 
turbulent shear flows are thus necessarily flow-dependent, while the mixing at 
small scales can be investigated in a largely generic context. However, the small 
scale structure of fully-developed turbulent flows and the mixing processes 
occurring within them are notoriously difficult to resolve. From the point of 
view of experimental studies, the microscopically fine lengthscales on which 
fully three-dimensional spatial variations occur, combined with the exceedingly 
short time scales on which temporal variations are found, typically frustrate 
attempts to access the small scales directly. Moreover, a lack of laboratory 
diagnostic techniques capable of yielding three-dimensional spatial 
measurements, not to mention simultaneous temporal measurements, has 
precluded any examination of the gradient fields that are of key interest at the 
small scales. Such experimental studies have instead been largely confined to 
single-point time series measurements, from which it can be difficult to infer 
spatial stmcture or dynamics. 
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In recent years, new experimental techniques have evolved that are 
beginning to permit far more detailed experimental investigations of the small 
scale structure and dynamics of mixing in turbulent shear flows than have 
previously been possible. The dense spatial and temporal information that 
results from these measurement techniques offers a level of resolution and detail 
that in many ways approaches those achievable in direct numerical simulation 
(DNS) studies. Moreover, these laboratory measurements allow investigations at 
certain parameter ranges that exceed those achievable by numerical simulations. 
The present study belongs to this class of experimental investigations. It is 
based on fully-resolved, four-dimensional, spatio-temporal imaging 
measurements of the universal small scale structure of Sc » 1 conserved scalar 
mixing in turbulent shear flows. The goal of this study is to provide insights into 
the three-dimensional physical structure and dynamics of the scalar mixing 
process at the small scales in turbulent flows. 

1.1  Background 

In any dynamically passive conserved scalar field ^(x,r), the local scalar 
value can change only through advection of the scalar quantity with the fluid and 
diffusion relative to the fluid. For a constant scalar diffusivity, the scalar field 
then satisfies the conservative advection-diffusion equation 

l+u.V--i-v2li;(x,o = o (i) 
_dt ReSc 

The  mixing  process  in  the  resulting conserved scalar field  C,(x,t)  can  be 
formulated in terms of the associated scalar energy per unit mass '/2^

2(x,r), 
analogous to the kinetic energy per unit mass  ^/2u

2(x,t). From (1) the scalar 
energy follows 

^ + u-V ?-V2 

dt ReSc 
■2,        . 1 -C2(x,0 = --—V^-VC(x,r)   , (2) 

ReSc 

where the right side gives the local instantaneous rate (per unit mass of fluid) at 
which scalar energy is irreversibly dissipated by molecular diffusion, and 
accordingly is termed the "scalar energy dissipation rate." The scalar energy 
dissipation rate field (/?e5c)-1V^ -V^(x,0 thus gives the local instantaneous rate 
of molecular mixing at every point in the flow. 

The normalization in (1) and (2) is with reference length and velocity 
scales, / and u , and an arbitrary scalar reference value C, . The only resulting 
dynamical parameter appearing explicitly is the dimensionless scalar diffusivity 
(1/ReSc), where the Peclet number ReSc is the product of the Reynolds number 
Re = (u I /v) and the Schmidt number Sc = (v/D), with v and D the vorticity and 
scalar cliffusivities, respectively.   However, the velocity field u(x,r) appearing in 
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these equations introduces a separate Reynolds number dependence through its 
own transport equation (the Navier-Stokes equation). As a consequence, the 
scalar field structure in general depends on both Re and Sc independently. In 
turbulent shear flows, if (1) and (2) are normalized with the local outer scales /* = 
5 and u* = U characterizing the local mean shear in the flow, then the resulting 
local outer-scale Reynolds number is Re§ = (£/S/v) and, when the flow is viewed 
on these outer scales, the scalar field structure z(x,t) will depend on both Re* 
and Sc. However, when the normalization is based on the local inner scales / = 
Xv and u* = (y/\), where for (equilibrium) turbulent shear flows Xv ~ 8 -Ref21* is 
the local strain-limited vorticity diffusion lengthscale, the resulting inner-scale 
Reynolds number is unity. In that case, when viewed on the inner scales, the 
mixing process becomes independent of the outer-scale Reynolds number and 
depends only on the Schmidt number. This will be true provided the scale 
separation between the local inner and outer flow scales is sufficiently wide, 
namely that the local outer-scale Reynolds number Re§ is sufficiently large. 
Moreover, since the outer variables appear in the governing equations only 
through Re§, the mixing process at the small scales will therefore be 
independent of the outer scale variables, and thus will also be independent of 
the particular shear flow. In this sense, the fine scale structure of conserved 
scalar mixing, when viewed on the inner scales of high Reynolds number 
turbulent flows, is believed to be largely universal, namely independent of the 
Reynolds number and of the particular shear flow, and depends only on the 
Schmidt number 5c. 

Of particular relevance to laboratory measurements, the inner (small) 
scales of turbulent flows at Reynolds numbers sufficiently high for the scale 
separation to allow this presumed universal structure to form must be 
compared with the resolution capabilities achievable. Ultimately, the finest 
experimental resolution attainable places a limit on the highest Reynolds 
number at which such fine structure measurements can be meaningfully made. 
In the experimental investigation undertaken here, the objective is to obtain 
fully resolved measurements of the fine structure scales of the molecular mixing 
process in turbulent flows at Reynolds numbers that are believed to be high 
enough for this universality to be approached. In this sense, the overall nature 
of the fine structure seen here, as well as its detailed features documented in 
these measurements, are believed to be largely generic to high Reynolds 
number conserved scalar mixing in turbulent flows, and not specific simply to 
the particular Reynolds numbers or the particular flows in which the 
measurements were obtained. 

Most  previous  measurements  of the  structure  of scalar  mixing  in 
turbulent   shear   flows   have   been   based   on   single-point   time   series 
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measurements of the scalar field £(?). From these, a mean flow Taylor 
hypothesis is typically invoked to allow the resulting time derivatives dC/dt to be 
used to estimate the spatial derivative along the mean flow direction. From the 
resulting approximation for this one component of the scalar gradient vector 
field, the scalar dissipation is then typically estimated on the basis of a mean 
isotropy approximation. While it is known that this approximation, and its 
analog in the kinetic energy dissipation field, can lead to significant inaccuracies, 
limitations of traditional measurement techniques have dictated this as a basis for 
analyses of the dissipation field structure. For example, Sreenivasan & Meneveau 
(1986) and Sreenivasan, Ramshankar & Meneveau (1989) have used this 
approximation to argue for fractal scaling of the geometric support set on which 
the resulting dissipation fields are concentrated. Similarly, Sreenivasan (1991) 
and Meneveau & Sreenivasan (1991) have used the same approach to conclude 
that multifractal scaling applies to the dissipation fields in turbulent shear flows, 
and Dowling (199D and Antonia & Mi (1993) have used this approximation to 
estimate properties of the scalar dissipation field in a turbulent jet. 

In contrast to such time series measurements, multi-dimensional spatial 
measurements based on the development of new optical techniques over the 
past decade have led to a number of experimental studies of the structure of 
conserved scalar mixing. Most of these investigations have examined the 
topologically simpler large scale features of transitional flows, but have not had 
the spatial and temporal resolution necessary to resolve the fine scale structure 
of the conserved scalar fields typical of fully-developed turbulent flows. As a 
consequence, while such studies have produced useful information on larger 
flow scales, they have not been designed to allow accurate determination of the 
true scalar gradient field in fully-developed turbulent flows. There have, 
however, been a few investigations directed specifically at the small scale 
structure of mixing in turbulent flows. Yip & Long (1986) have used 
measurements based on two-dimensional planar laser imaging to yield three- 
dimensional scalar gradient information by imaging from two parallel and 
closely spaced laser sheets. However, both the sheet spacing and the pixel 
separation were significantly larger than the local diffusion scale in the flow. 
Following a somewhat different approach, Yip, Lam, Winter & Long (1987) and 
Yip, Schmitt & Long (1988) have swept a laser sheet at very high speed through a 
turbulent flow, in conjunction with very high speed image acquisition over a 
short duration, to obtain measurements in up to 16 closely spaced parallel 
planes. Essentially the same approach has been used by Prasad & Sreenivasan 
(1990). However, in these measurements the resolution was sufficient only to 
yield data at comparatively coarse scales of the flow, and the signal quality did not 
permit accurate differentiation of the resulting data to determine the true scalar 
dissipation rate fields.    Buch (1991) has used very highly resolved imaging 
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measurements specifically designed to produce high signal quality suitable for 
direct differentiation to yield the scalar dissipation rate fields at the small scales 
in Sc » 1 and Sc ~ 1 scalar mixing in turbulent shear flows. Those measurements, 
while spanning only two spatial dimensions, indicated that the scalar dissipation 
rate fields in both cases consisted entirely of thin, strained, laminar diffusion 
layers having a locally one-dimensional structure. Results obtained suggested 
that the thickness of the dissipation layers was a factor of six larger than the 
classical Batchelor scale. 

1.2 Present work 

The present study is aimed at providing the first fully-resolved, four- 
dimensional, spatio-temporal measurements of the universal small-scale 
structure of conserved scalar mixing in turbulent flows. It is based on a new 
technique for measuring the conserved scalar field ^(x,0 at the small scales of a 
turbulent shear flow with full spatial and temporal resolution, simultaneously 
spanning all three spatial dimensions and time, and with sufficiently high signal 
quality to determine the true scalar gradient vector field V^(x,0- Owing to the 
fact that the measurements extend simultaneously over all three spatial 
directions as well as time, there is no need to invoke any Taylor hypothesis or 
isotropy arguments to determine the scalar energy dissipation rate field 
V^ -VC(x,0. 

The scalar field was determined by high-speed imaging measurements of 
the laser induced fluorescence intensity emitted by the concentration field of a 
passive water-soluble dye having Sc ~ 2075, which mixes with undyed fluid in a 
turbulent shear flow. The measurements were made at a fixed location in the 
self-similar far field of an axisymmetric turbulent jet at outer-scale Reynolds 
numbers Reb in the range 2,600 - 5,000 and with Taylor-scale Reynolds numbers 
Rex ranging from 38 to 52. The Reynolds numbers accessible to these 
measurements are necessarily limited by the extreme resolution constraints 
placed on the experiments. Nevertheless, as will be noted later, these values 
appear to be high enough that the basic structure of the scalar field on the inner 
flow scale X will have attained its asymptotic high Reynolds number form. As a 
consequence, the results obtained here are believed to be largely representative 
of the universal small-scale structure of Sc » 1 conserved scalar mixing in all high 
Reynolds number turbulent shear flows. 

Results are presented in the form of individual three-dimensional (2563) 
spatial data volumes, which clearly show the physical structure of the scalar 
dissipation field at the small scales, as well as in probability density functions and 
spectra which quantify various key structural and statistical features of this small- 
scale mixing process.    The nature of these measurements provides detailed 
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spatio-temporal data of a type that in many ways resembles more the data from 
direct numerical simulations (DNS) than from traditional experimental 
measurement techniques. However, unlike DNS studies, the present 
experiments are capable of addressing the small scale structure of large Schmidt 
number mixing in turbulent flows. Each experiment produces over 3 billion 
individual, fully-resolved, point measurements of the scalar field values 
throughout a four-dimensional space-time domain. Yet owing to the very high 
resolution of these points, they typically span over only about 3 local outer flow 
time scales (&/U). As a consequence, while these measurements provide highly 
detailed information on the spatial structure and temporal dynamics of the flow, 
long time statistics are inherently more difficult to obtain. In this sense, these 
measurements are viewed as complementing traditional single-point time series 
data, from which spatial structure and gradient information are difficult to 
obtain, but which provide long time records suitable for statistics of other types 
of quantities. Similarly, while the present measurements provide very dense and 
highly resolved three-dimensional spatial information in data volumes as large as 
2563, the need to resolve the smallest scalar gradients within these volumes 
restricts their physical size to just a few inner flow scales X in each direction. 
As a consequence, highly detailed spatial information at the dissipative scales of 
the flow is available, but no access to the inertial range of scales is currently 
possible. In this sense as well, these measurements are viewed as 
complementing traditional time series measurements, which have no access to 
the three-dimensional spatial spectrum, but which can access inertial scales in 
temporal spectra. These experiments thus provide a unique type of information 
well suited to the present study, which when viewed in conjunction with results 
from more traditional laboratory measurements and DNS studies allows a 
previously inaccessible level of resolution and detail on the structure and 
dynamics of the Sc » 1 scalar mixing process at the small scales of turbulent 
flows. 

2. Experimental technique 

The results reported here were based on a new technique for obtaining 
fully-resolved, four-dimensional, spatio-temporal laser induced fluorescence 
measurements of the structure and dynamics of the conserved scalar field at the 
small scales of turbulent shear flows. All measurements were conducted in the 
fully-developed self-similar far-field of an axisymmetric turbulent jet at the 
conditions listed in Table 1. The conserved scalar field C,(x,t) was determined 
from the concentration of an inert, water-soluble, passive, laser fluorescent dye 
(disodium fluorescein) introduced with the jet fluid, which subsequently mixes 
with ambient fluid in the resulting turbulent flow. For weak aqueous solutions of 
this dye, the Wilke-Chang method indicates a Schmidt number of 2075.   Laser 

10 
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induced fluorescence from the dye concentration field within a small x-y-z 
volume in the flow was measured using high-speed, high-resolution, successive 
planar laser induced fluorescence imaging from a swept laser beam. 

2.1  Facility 

A steady axisymmetric turbulent jet was formed by issuing a weak 
aqueous disodium fluorescein solution through a 4.9 mm axisymmetric nozzle 
into de-ionized water in a tank. The nozzle contraction ratio exceeded 300:1 
leading to an essentially uniform nozzle exit velocity profile that allows the jet 
momentum flux J to be inferred directly from its measured mass flow rate. In 
the self-similar far field, the local flow width 8 and mean centerline velocity U 
scale with the momentum flux J, ambient fluid density p, and the downstream 
location x as 

5(x) = 0.44-x (3a) 

£/(*)« 7.2-(//py'V1 Ob) 
where the constants are from measurements in the literature (Chen & Rodi 
1980). Here 5 is the full width at which the mean scalar profile drops to 5% of its 
centerline value. From (3a,b) the local outer-scale Reynolds number /?e§ = (USA') 
that drives the flow remains invariant with x in the far field. All measurements 
were made 235 diameters downstream of the jet exit (x = 1.15 m), for which the 
resulting 8(x) = 50 cm. For comparison, the three-dimensional measurement 
volume was typically 2.5 cm on each side. 

Measurements by Ricou & Spalding (1961) give the total mass flux scaling 
in the jet far field as 

m(x) = 0.282 -{pJ)U2x (4) 

A small coflow, between 0.6 and 1.2 mm/s depending on the value of J, was 
established in the tank to match m(x) in (4) just downstream of the measurement 
location, thus preventing recirculation of dyed fluid into the jet. The effect of 
this coflow is given by the similarity coordinate (x/$) for axisymmetric 
coflowing turbulent jets, where #2 = WflpJJj) with U„ the coflow velocity. As 
(j/ft) _> oo the scaling becomes that of a wake, while (x/$) -> 0 recovers the non- 
coflowing jet scaling. All cases considered here correspond to (x/r>) = 0.77. 
Measurements by Biringen (1975) show this to be within the jet-like limit (e.g. 
Dahm & Dibble 1988). The effect of the coflow is thus negligible and the scaling 
laws in (3a,b) for the classical axisymmetric turbulent jet apply. 

The  temperature  profile  in the  tank was  measured to  insure  that 
stratification   effects   were   negligible   (within  the  0.1   K  resolution  of the 
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thermocouple). Similarly, the temperature difference between the jet and 
ambient fluids was maintained below 0.1 K. In terms of the Morton length scale 
this places the measurement location at (x/lM) < 1.7 for all cases considered, and 
thus within the momentum-driven jet limit (Papanicolaou & List 1988).' To 
remove any effect of pH variations on the laser induced fluorescence from the 
dye, the jet and ambient fluids were fixed to pH = 11. 

2.2 Laser induced fluorescence imaging 

A 5W argon-ion laser was operated in multi-line emission mode (see 
Table 2) to excite the fluorescence. An orange filter [HOYA O(G)] was used to 
block the Mie scattered light from any particles in the flow. This filter 
effectively blocks 92% of the light at the longest wavelength (514.5 nm) of the 
laser, and virtually all of the light at the shorter wavelengths of the remaining 
laser lines. Near the peak of the dye emission spectrum (at 520 nm) the filter 
transmits only 19% of the incoming light, but by 540 nm, where the emission is 
still strong, 78% of the incoming fluorescence intensity is transmitted. 

Fluorescence intensity from dye-containing fluid along the path of a 
swept laser beam was measured with a 256 x 256-element photodiode array 
(EG&G Reticon MC9256/MB9000). Fluorescence transmitted through the orange 
filter was collected by a Vivatar 100mm f-2.8 macro lens operated at full 
aperture. Figure 1 shows key elements of the data acquisition system assembled 
to convert and store the serial output from the photodiode array in 8-bit digital 
format. The array formatter provided a non-interlaced, sampled-and-held 
output train to the A/D converter. An external clock signal drove the array at 
pixel rates up to 11 MHz, corresponding to a framing rates up to 120 frames per 
second. A dual-ported image processor effectively acted as a high speed 16 MB 
buffer in which segments of the array output data stream were temporarily 
stored en route to four 823.9 MB capacity disk drives. The 3.1 GB capacity of 
the disks allowed continuous interleaved acquisition of nearly 200 individual 2563 
spatial data volumes, or over 50,000 individual 2562 data planes at the sustained 
throughput rate of 9.3 MB/sec. 

2.3  Beam scanning electronics 

A collimated laser beam was rapidly swept through the measurement 
volume in a pattern of fast vertical scans and slower horizontal scans 
synchronized to the imaging array electronics. Beam scanning was 
accomplished with two fast, low-inertia, galvanometric mirror scanners. For 
each vertical sweep, the 256 x 256 imaging array captured the fluorescence 
intensity field emitted from the two-dimensional x-y plane swept by the beam. 
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A concurrent horizontal sweep effectively stepped this x-y measurement plane 
through a set of up to 256 increments in the third (z) direction to produce a 
discrete set of parallel data planes. These planes collectively produced a single 
three-dimensional spatial data volume containing up to 2563 individual 
measurement points, as indicated in figure 2. The separations Ax and Ay 
between points in each plane were set by photodiode array element size and 
the magnification of the optical system, while the effective separation Az 
between parallel planes was set by the interplane spacing and the laser beam 
diameter. 

Once the desired number (Nz) of parallel planar beam sweeps had been 
completed, the beam returned to the original position and the pattern was 
repeated. A rapid temporal sequence of such three-dimensional spatial data 
volumes could thus be acquired to produce a four-dimensional spatio-temporal 
data space. The laser beam diameter and beam sweep rate set the time Ax 
during which each element in the photodiode array was illuminated, effectively 
determining the temporal resolution of each individual data point. As shown in 
§2.7, the Ax values were typically three orders of magnitude shorter than any 
relevant fluid dynamical time scale. The elapsed time At between acquisition of 
adjacent parallel spatial data planes was set by the framing rate of the imaging 
array, and determined the degree to which any measurement was capable of 
"freezing" the dye concentration field, and thereby determined (in part) the z- 
differentiability within each three-dimensional spatial data volume. As shown in 
§2.7, Ar was typically an order of magnitude smaller than the shortest time scale 
in the dye concentration field. Lastly, the time AT between acquisition of the 
same spatial data point in temporally successive three-dimensional spatial data 
volumes was set by the number of planes Nz per three-dimensional volume, and 
effectively determined the time differentiability of the data. For sufficiently 
small Nz the resulting data were time-differentiable as well as space- 
differentiable, producing a genuinely four-dimensional spatio-temporal data 
space. 

2.4 Signal levels 

Accurate differentiability of the resulting experimental data requires 
sufficiently high signal quality in the original fluorescence intensity 
measurements. To maximize the overall signal-to-noise ratio, the fluorescence 
intensity was maximized by operating the laser in multi-line mode. Table 2 gives 
the relative strengths of each of the laser excitation lines. The resulting multi- 
spectral excitation, however, complicates the conversion from the measured 
fluorescence intensity field to the dye concentration field. For any single 
wavelength Xit absorption of beam power by the dye is given by the classical 
Beer's  Law.     In  multi-line   mode,   the  combined  effects  of all  excitation 
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wavelengths leads to a modified Beer's Law relating the fluorescence intensity 
field F(x,t) to the dye concentration field c(x,t) as 

F(S) = X^o(pc($)cx(A,)e(\,.)-exp -E(~k,)jc(rOdr) (5) 

Here £, is a coordinate along the beam propagation path, c is the local molar dye 
concentration, and 8 is the molar extinction coefficient for each excitation 
wavelength, with a the relative laser line strengths in Table 2, (p the overall 
quantum efficiency, and P0 the reference beam power. The molar extinction 
coefficients e(X,p in (5) measured for each individual wavelength are given in 
Table 2. For constant beam power, the fluorescence intensity, even when 
operating with multiple wavelengths, is linearly related to the dye concentration. 
In addition the extinction function, a product of the molar extinction coefficient 
e and the concentration c, is linearly related to the dye concentration for each 
wavelength. Figure 5a shows this result for the two principle wavelengths (488.0 
nm and 514.5 nm), where the slope of each curve gives the molar extinction for 
that wavelength. Figure 5b gives the result if a single net extinction function is 
defined for the entire beam. Shown with good agreement is the theoretical 
result based on the measured line strengths and molar extinction coefficients for 
the individual wavelengths, demonstrating that the full beam transmission can be 
accurately determined from the characteristics of its individual components in 
Table 2. This is essential when accounting for beam attenuation effects in 
converting the measured fluorescence intensities to the dye concentration field. 

The laser beam power and dye concentration combine to set the 
fluorescence intensity, however (5) shows that increasing the dye concentration 
c also increases the beam absorption integral along the propagation path, and 
thus reduces the local power at the measurement location. The radial location in 
the jet at which the fluorescence intensity is maximized can range from the 
centerline to the outer edge of the flow depending on the mean dye 
concentration, and the resulting peak fluorescence intensity increases as this 
maximum moves increasingly outward along the jet radius. The center of the 
measurement volume was thus chosen halfway along the jet radius (r/x = 0.11), 
near the location of maximum mean shear based on the mean velocity profile. 
For this radial and axial position of the measurement volume, there is a single 
dye concentration at the jet exit that maximizes the mean fluorescence intensity. 
From (5), for low dye concentrations the attenuation becomes negligible and the 
fluorescence intensity becomes proportional to the dye concentration, but the 
fluorescence signal is weak. Conversely, for high concentrations the dye 
medium absorbs most of the laser power, again producing a weak net 
fluorescence intensity. These two competing influences lead to an optimal dye 
concentration that maximizes the fluorescence intensity, found by maximizing 
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F(£) in (5) for the mean radial dye concentration profile c(£). 

2.5 Signal-to-noise ratio 

Noise sources in the photodiode array include those that depend on the 
incident light intensity and those that do not. The latter, dominated by the 
"dark" current from thermal (Johnson) noise in the photodetector and 
associated electronics, is independent of the signal level S. When this noise 
source is dominant, the absolute noise level N is constant and thus the resulting 
signal-to-noise ratio (S/N) increases linearly with the measured signal level. In 
contrast, photon shot noise increases with the illumination level, producing an 
rms noise level proportional to the square root of the signal level. Noise levels 
in the imaging array were determined by acquiring data from a nominally 
uniform illumination source at eight different lens aperture settings. Figure 4a 
gives the resulting distributions of 8-bit digital signal values obtained for each 
illumination level, with the corresponding noise distributions shown in figure 4b. 
The noise distributions at the four lowest signal levels in figure 4a collapse well 
to a single curve, for which the width in figure 4b (the rms noise level) is 
constant. The remaining curves in figure 4b, corresponding to higher average 
signal levels, increasingly deviate by broadening and becoming asymmetric. The 
broadening of these distributions reflects the increasing noise level. Note, 
however, that even in the worst case the rms noise level is less than 1.25 digital 
signal levels out of the 256 levels discernible with 8-bit measurements. The rms 
noise level (width) from each of the distributions in figure 4b is shown in figure 
5, giving the scaling of the signal-to-noise ratio (S/N) with the mean digital signal 
level. The result clearly shows the transition from dark noise-limited 
measurements below digital signal levels of about 50, identifiable by the 
characteristic (S/N) ~ S1 scaling, to the shot noise-limited regime with the 
characteristic (S/N) ~ S1/2 scaling for signal levels above about 150. The actual 
fluorescence intensity measurements typically span the full 256 digital signal 
levels under the same operating conditions, and thus range from camera noise- 
limited to shot noise-limited. However, the result in figure 5 shows that when 
the signal level is maximized, the S/N ratio is slightly over 200, and even at the 
mean digital signal level of 50 the resulting signal-to-noise ratio is still above 65. 

2.6 Resolution requirements 

The smallest spatial and temporal scales (Ax, Ay, Az, Ar, and AT in §2.3) 
resolved by these measurements must be compared with the finest local spatial 
and temporal scales on which gradients can exist in the turbulent conserved 
scalar field. The smallest gradient lengthscales in the underlying turbulent flow 
are  set  by  a   local   competition  between  the  thinning  effect  of the  most 
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compressive principal strain rate e and the broadening by the diffusivity v (see 
§6). These establish an equilibrium strain-limited vorticity diffusion length scale 
(the inner scale) Xv~ (v/e)1/2, closely related to the Kolmogorov scale, giving the 
finest length scale on which spatial gradients in the vorticity can be locally 
sustained in the flow (e.g. Burgers 1948, Townsend 1951). A similar competition 
between the effects of strain and molecular diffusion of the scalar establishes a 
local strain-limited molecular diffusion scale XD~(D/e)l/2, related to the Batchelor 
scale and giving the smallest length scale on which spatial gradients in the 
conserved scalar field can be sustained (e.g. Carrier, Fendell and Marble 1975). 
The ratio of vorticity and scalar diffusivities establishes the relation between 
these two strain-limited diffusion length scales as XD = X ■ Sc~in. 

Classical inertial range arguments give the highest local strain rates in 
terms of the local outer-scale Reynolds number as 8 ~ (C//8)- Red

l/2. The smallest 
strain-limited diffusion length scale in the conserved scalar field is then related to 
the local outer scale 8 as 

XD~d- fle5-3/4. Sc-i/2, (6) 

with the accompanying small-scale time 

(V") ~ (5/") • Sc-1/2 tfes-
3/4 . (7) 

where the constant in (6) and (7) will be referred to as A. The precise definition 
for the scalar gradient lengthscale A.D in (6) is from the scalar dissipation profile 
across the layers seen in §3 to dominate the small scale mixing process, as the 
distance along the local layer normal between the points where the dissipation 
drops to 20% of the profile maximum value. Some indirect estimates suggest (A) 
values as high as 25 (e.g. Dowling & Dimotakis 1990) and (A) ~ 15 can be 
obtained from measurements by Dowling (1991). More recent direct 
measurements by Buch (1991) suggest a value of (A) = 11.2. For conservatism 
the latter estimate will be used here, though one of the goals of this study is to 
obtain an independent assessment of this constant. 

2.7 Spatial and temporal resolution 

The resolution requirements (Ax, Ay, Az) « ^D and At « {X-Ju) must be 
satisfied to allow meaningful differentiation in all three directions within each 
three-dimensional spatial data volume to determine the scalar gradient vector 
field V^(x,0- Furthermore, if the resulting data are to be time-differentiated as 
well between successive three-dimensional spatial data volumes, then the 
additional temporal resolution requirement that AT « (XQ/U) must also be met. 
These requirements ultimately limit the highest Re5 values at which such fully- 
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resolved measurements are possible. While the demands on Ax and Ay can in 
principle be satisfied by reducing the image ratio, the resolution Az is 
determined by the laser beam thickness and the interplane spacing. The laser 
beam thickness was larger than the desired spatial separation between planes, 
however since the time At between planes was small enough that the scalar field 
was effectively frozen, the overlap in the measured scalar field between adjacent 
planes represents a convolution of the true scalar field with the laser beam 
profile. The measured scalar field was thus deconvolved with the measured 
beam profile shape to produce an effective resolution Az comparable to the 
spatial separation between adjacent data planes. Note that this overlap extends 
only to the next adjacent data plane on either side, so that the effect of this 
deconvolution is relatively small. 

For the conditions in Table 1 and the outer flow scalings in (3a, b), (6) gives 
the local strain-limited molecular diffusion lengthscale estimates Xv and X,D in 
Table 3. These XD values must be compared with the corresponding Ax, Ay, and 
Az values given to assess the relative spatial resolution. Note that (AxM.D) and 
(Ay/A,D) range from 0.51 to 0.30, and the interplane spacing (AzA,D) varies from 
0.47 to 0.24. The characteristic pixel image volume dimension (Ax- Ay- Az)1/3 is 
thus typically about 3 times smaller than Xüt with its maximum dimension (Az) 
typically 2 times smaller than XD, indicating that all cases considered here are 
fully resolved in all three spatial dimensions. Additionally, the measured 1/e 
laser beam diameter is in all cases less than 0.74^D, though as noted above the 
effect of this is largely removed by deconvolving the measured data with the 
beam profile. Depth-of-field measurements show that the resolution is typically 
degraded by only a factor of 1.6 at the front and back planes of the 2563 three- 
dimensional spatial data volumes. 

As a test of these spatial resolution estimates, figure 6 presents a "grid 
refinement" procedure based on the actual measured scalar field values, and 
compares the results with various models for the dissipation field. Specifically, 
the abscissa gives the resolution in terms of the number of pixels per diffusion 
scale, namely (Ax-A,D), while the ordinate is the fraction of the total scalar 
dissipation that results from differentiation of data at that resolution scale. The 
solid curve is the theoretical result for a single, isolated, one-dimensional, scalar 
dissipation layer with scalar endpoints (£+,C~) = C0'1) naving the classical strain- 
limited error function profile (see §6.1). The long-dashed curve incorporates 
variations in the scalar endpoints (C,+, C,~) using the measured distributions from 
§6.2. The short-dashed curve further reflects the effects of the varying layer 
thicknesses from the measured distribution in §5.4. The latter provides a one- 
dimensional model that best represents the actual three-dimensional turbulent 
scalar fields.   The symbols in figure 6 show the effects of successive resolution 
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degradations applied to two of the measured scalar field data volumes shown in 
§3. The scalar field data were averaged over the scale indicated and used to 
compute the scalar dissipation fields. To interpret figure 6, note first that there 
is relatively good agreement between the short-dashed model and the 
experimental data over the entire range of grid refinements. Since the 
horizontal locations of the data points are set entirely by the resolution 
estimates in Table 3, this agreement suggests that the A,D values are quite accurate. 
Additionally, these results allow the experimental resolution requirements to be 
more precisely understood. Note that, irrespective of the model chosen, the 
results indicate that an experimental measurement capable of detecting 98% of 
the total scalar dissipation would require at least 10 pixels per diffusion scale. On 
the other hand, a measurement with only two pixels per kD would still recover 
over 75% of the total dissipation, but a measurement with resolution ten times 
coarser than the local diffusion scale would detect less than 1% of the dissipation. 
At the actual resolution level of the measurements shown, these experiments 
detect roughly 80% of the total dissipation. 

Table 4 gives the time scale estimates (k^y/u) for each of the cases 
considered, together with the At, Ar, and AT values of the measurements. In all 
cases, the pixel illumination time Ax is never larger than 0.004 (k^Ju). Moreover, 
the interplane time Ar is typically 0.07 (k^/u), and even in the worst case Ar is 
never larger than 0.14 (k^/u), indicating that the scalar field between parallel 
planes is effectively "frozen". For cases R0420, R0628, and R0811, the smaller 
number of z-planes per volume insures that the intervolume time AT < (k^/u), 
so in these cases the measured scalar field is time-differentiable as well. 

2.8 Data reduction 

The measured fluorescence intensity data F(x,t) is converted to the true 
dye concentration field c(\,t), and then to the conserved scalar field C,(x,t). Non- 
uniformities in the imaging array and optical system are first removed by 
dividing the fluorescence intensity data by a measured transfer function h(x,y), 
obtained from the fluorescence in a uniform dye concentration field. The 
convolution noted in §2.3 between adjacent spatial data planes can be written as 
a linear system in which the radial power profile of the beam is represented by 
a diagonal matrix. In practice the interplane spacing Az was set relative to the 
beam diameter, so the resulting convolution matrix was essentially tri-diagonal; 
i.e. all off-diagonal terms except for the first are virtually zero due to the gaussian 
rolloff of the beam profile. This reduces the convolution to a tridiagonal matrix 
equation, which was inverted to obtain the deconvolved fluorescence intensities 
at all but the front and back planes in each volume. 

Conversion  of the   deconvolved  fluorescence   intensity  field  to  the 
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underlying dye concentration field requires correcting for the laser beam 
attenuation via (5). If the instantaneous dye concentration and beam power 
were known at some point in each row of every plane, then the integral 
correction could be precisely implemented. However since the attenuation is 
an integral effect and the path length is long relative to the scale Xüt the 
integrated attenuation is roughly constant. On this basis it is assumed that the 
beam power entering the measurement volume is constant, and that the dye 
there is at the local mean dye concentration, establishing reference values from 
which the attenuation within the measurement volume could be corrected. As a 
test of this procedure, figure la shows the mean measured fluorescence 
intensity profile across the image volume for two typical cases. Figure lb gives 
the corresponding fully-corrected mean dye concentration profiles, with the 
dotted line showing the theoretical mean profile across the measurement 
volume. The two corrected profiles follow this mean profile well, with 
remaining variations presumably due to a lack of complete statistical 
convergence of the mean profiles. 

3.  Small scale structure 

Detailed measurements of the small scale structure of conserved scalar 
mixing in turbulent flows were obtained as outlined in the previous section for 
each of the cases listed in Table 1. Together these comprise over 20 billion 
individual point measurements. The results presented here are from analyses of 
typically one-fifth of the data in each case considered. 

3.1  Two-dimensional intersections 

Figures 8a-c show the measured scalar field data C,(x,t) in three adjacent, 
parallel, two-dimensional conserved scalar data planes, separated by a distance 
Az, from a single three-dimensional spatial data volume. A total of 256 such 
individual spatial data planes are stacked as indicated in figure 1 to create each of 
the three-dimensional (2563) spatial data volumes. Nearly 200 such three- 
dmensional spatial data volumes are acquired in each such case. The axes 
indicate the orientation and size of these data planes in terms of the local strain- 
limited vorticity diffusion lengthscale Xv. As noted in §2.1, the measurement 
volume was more than 20 times smaller than the local outer scale 8. The 256 
different color levels give the scalar field value C, at each data point, with pure 
blue beginning at t, = 0 corresponding to pure ambient fluid, and with pure red 
denoting the highest 0.1% of scalar values seen in that particular data volume. 

The nearly imperceptible change in the scalar field structure from one 
plane to the next in figures 8a-c is a result of the very high spatial resolution.  The 
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three-dimensional spatial nature of these data thus allows differentiation within 
each plane and between adjacent planes to determine the true scalar gradient 
vector field V^(x,/). Note that all derivative fields presented here were obtained 
by direct linear central differencing of the measured scalar field data, with no 
explicit smoothing or filtering applied to any of the results. The resulting scalar 
energy dissipation rate field V£ -V£(x,f) in the central plane in figures 8a-c is 
shown in figure 8d. Since the range of scalar dissipation rates in the flow is very 
wide, the logarithm of the dissipation rate is shown. In this case, the colors 
denote logarithmically increasing dissipation rates, with the lowest level colored 
black and denoting zero and very low dissipation rates, with the remaining 255 
colors ranging from pure blue through pure red denoting logarithmically 
increasing dissipation rates. Although effects of noise can be seen in the 
resultant scalar dissipation field in figure %d, the relatively smooth fields obtained 
reflect the high resolution and signal quality attained in the original scalar field 
measurements. 

While the structure of the scalar dissipation rate field at the small scales of 
turbulent flows is considered in detail below, the basic nature of this structure is 
evident even in figure 8d. Since this plane shows a two-dimensional intersection 
through the true three-dimensional scalar dissipation field, the layer-like 
dissipation features seen represent intersections with a highly convoluted 
surface around which essentially all of the dissipation is concentrated. Note that 
variations in the dissipation field along the local normal to this surface far exceed 
those along the local tangential directions. 

The individual scalar gradient vector component fields that form the 
dissipation rate field in figure 8 are shown in figures 9a-c. Since these 
component fields can take on both positive and negative values, a pure yellow 
coloring is used to denote zero values, with colors from yellow through blue 
denoting negative values, and yellow through red denoting positive values. Note 
that the individual derivative fields are relatively noise-free, with most of the 
noise present in the y-derivatives in figure 9b, presumably from imperfections 
in the laser beam sweep. Figure 9d gives the resulting linear scalar dissipation 
rate field in the same intersection plane for comparison with figure 8d. This 
linear representation does not allow the underlying structure in the dissipation 
field to be as readily discerned as the logarithmic form in figure 8d, but allows 
the highly intermittent nature of the dissipation field to be more readily seen. In 
particular, note that high values of the scalar dissipation, corresponding to 
yellow and red colorings in figure 9d, are relatively rare, while blue colorings 
denoting low dissipation rates are veiy common. The distribution of dissipation 
rates is determined from these measurements in §5. 
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While figures 8 a" and 9d show the magnitude of the scalar gradient vector 
field, the respective gradient vector component fields in figures 9a-c allow the 
scalar gradient vector orientation field to be determined in terms of the 
spherical orientation angles i3- and cp. The former represents the angle between 
the positive x-axis and the projection of the scalar gradient vector into the x-y 
plane, while the latter gives the angle between the scalar gradient vector and the 
positive z-axis, namely 

(8a) -i 3C/3/ # = tan 

cp = cos       ,il . (8b) 

Figure 10 shows the orientation fields $(x,t) and(p(x,f) for the same intersection 
plane in figures 8 and 9- The color assignments for £ in figure 10a use yellow to 
denote zero, with values from zero to +n ranging from yellow through red, and 
with yellow through blue corresponding to zero to -7t. The apparent blue-red 
discontinuities in the d field occur where the scalar gradient vector orientation 
switches from +7t to -n, though the orientation field remains continuous. Black 
denotes points where the magnitude of the gradient is too small to accurately 
determine the vector orientation. The cp-field is shown in figure 106, where the 
color map begins at blue representing zero, for which the gradient vector 
points outward normal to the intersecting plane, and increases uniformly to red 
representing cp = 7t, for which the gradient vector points directly into the 
intersecting plane. 

Note that with the exception of the jump in color between +n to -71 in 
the ■& field, the scalar gradient vector orientation field in figure 10a,b changes 
over a much larger length scale than does its magnitude seen in the scalar 
dissipation fields in figures 8d and 9a", in apparent agreement with the estimates 
for the vorticity and scalar gradient lengthscales XD and \ in Table 3 and the 
figure axes. Owing to the scalar field dynamics, the scalar gradient vector tends 
to align in the direction of the most compressive principal strain rate axis, which 
varies on the scale of the vorticity diffusion lengthscale \. This appears to be 
consistent with the scale of variations in color patterns and the axis scales in 
figures 10a,b. Unlike the orientation field, the scalar gradient magnitude field 
(the scalar dissipation) should vary on the lengthscale XD, and this too appears to 
be verified by the data in figures 8a" and 9a". 

3.2 Three-dimensional data volumes 

Figures   11-13  give  examples  of experimentally measured three- 
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dimensional spatial structure in the conserved scalar fields and scalar energy 
dissipation rate fields at the small scales of the turbulent flow. In each case, part 
(a) shows the scalar field £(x,f), part (b) shows the corresponding scalar energy 
dissipation rate fields V£ -V£(x,0, and the logarithm of the dissipation rate 
fields, bg]0 VC, -V£(x,0, are shown in part (c) of each figure. These figures are 
constructed by assembling 256 parallel planes of the type discussed in §3.1. The 
color assignments used to denote In each of these figures, the axes indicate both 
the orientation and spatial extent of the data volumes in terms of the local strain- 
limited vorticity diffusion lengthscale X,v, obtained as described in §2.7. Note 
that no consistent directional preferences are readily apparent in these data, 
suggesting that the mixing process at these small scales is at least approximately 
isotropic. Slight anisotropies consistent with the orientation of the principal 
axes of the mean strain rate field will, however, be revealed by detailed 
numerical analyses in §5 and §6. 

These logarithmic forms reveal that practically all of the scalar dissipation 
field, even at the very low levels, is confined to thin, strained, laminar, sheet-like 
diffusion layers. Such layers were originally envisioned by Burgers (1948) and 
Townsend (1951) as a consequence of the strain-diffusion competition in the 
spatially uniform local strain rate field that must result in a Lagrangian frame tied 
to any material point (see §7.1). Buch (1991) used two-dimensional imaging 
measurements to conclude that all of the scalar dissipation occurs within such 
sheet-like structures, rather than the line-like structures that result from a locally 
axisymmetric and compressive principal strain rate field. That conclusion was 
based on the observation that no circular dissipation structures were seen in the 
two-dimensional data. The missing scalar gradient component in any two- 
dimensional measurement would miss dissipation structures resulting from 
scalar gradients pointing normal to the measurement plane. However, the 
three-dimensional nature of the present measurements insures that all 
dissipation structures can be discerned. Notice that, whereas some dissipation 
layers may not appear sheet-like where they intersect a two-dimensional surface 
(such as the cube faces), when viewed in three dimensions these can be seen to 
be sheet-like structures. 

The continual stretching and folding of these scalar dissipation sheets by 
the underlying strain rate and vorticity fields in the turbulent flow maintains 
both the scale and topology of these structures. These aspects of the small scale 
structure are analyzed in subsequent sections. For the present purposes, it is 
important to point out that this same stretching and folding, when viewed on 
the outer scales of the flow, leads to the entrainment of ambient fluid into the 
turbulent jet. Subsequent repetitions of this dynamical process leads to a 
reduction in scale of this entrained ambient fluid, and molecular mixing with the 
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mixed fluid already in the jet. Note, however, that at this radial location in the jet, 
the self-similar entrainment mechanism is capable of bringing large regions of 
ambient fluid into the measurement volume. Examples of this can be seen in 
many of the data volumes resulting from these measurements (e.g. see figure 17). 
Within these relatively large regions of ambient fluid, the conserved scalar and 
scalar gradient (dissipation) values are both zero. Gibson (1968) has postulated 
that zero gradients are limited to isolated points in turbulent flows, however 
when entrainment is present then this becomes an additional source for zero 
gradient regions. The joint statistics of the conserved scalar and scalar 
dissipation fields will be considered in §5 and §7. 

4.  Scalar and dissipation field statistics 

Measurements of scalar field statistics for large Schmidt number scalar 
mixing are relatively rare. This section presents results for various single-point 
probability density functions associated with the conserved scalar field and its 
gradients. These serve to quantify details of the fundamental structure of the 
scalar mixing process noted in §3. 

4.1  Scalar field statistics 

Single-point scalar field statistics in turbulent jets have been reported 
from a number of previous investigations (e.g. Antonia, Prabhu & Stephenson 
1975; Becker, Hottel & Williams 1967; Birch et al 1978; Chevray & Tutu 1978; 
Lockwood & Moneib 1980). These allow comparisons with, and partial 
validation of, the present measurements. However the present resolution is 
higher than in prior investigations, and thus it is equally interesting to look for 
differences that may be attributable to the higher resolution. 

Figure 15 shows the probability density function (pdf) of the conserved 
scalar field £(x,f) at the (r/x) =0.11 measurement location for two different cases. 
Note that this radial location in the axisymmetric turbulent jet is at the point 
where the mean flow strain rate (e.g. Wygnanski & Fiedler 1969) and scalar 
fluctuation level (e.g. Becker, Hottel & Williams 1967) are highest. The pdf's 
obtained for the two cases shown agree quite well, though there are some 
differences apparent. It appears unlikely that these result from the small 
difference in Reynolds number (see Table 1), but rather are due to incomplete 
statistical convergence of the scalar field pdfs. Statistics presented for each of 
these two cases are from analyses of typically 30 complete 2563 spatial data 
volumes, each spaced 3 AT apart, and comprising nearly 500 million data points. 
However, these volumes span a time interval slightly less than 3 local outer flow 
time scales (8/U), whereas typically ten or more outer time scales are required to 
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obtain essentially converged statistics. 

Putting the small differences in figure 15 aside, both the general shape 
and width of the pdfs are remarkable. The area under the spike near £ = 0 
accounts for a significant fraction of the pdf - approximately 15% of the fluid at 
this location is at concentrations less than one-tenth of the local mean value. 
Previous measurements of the Sc » 1 pdf at this location in turbulent jets (e.g. 
Dahm & Dimotakis 1990) show a spike that accounts for a significantly smaller 
fraction of the fluid. Indeed the entire pdf in figure 15 has a different shape than 
results from previous investigations of large Sc mixing in jets. These differences 
appear directly attributable to the lower spatial resolution of earlier 
investigations. In particular, prior measurements of the pdf show a broad peak 
centered near the local mean scalar value, with a small spike near the ambient 
fluid value. The present results show no peak at the mean value, and show more 
fluid at extremely low and high concentrations. The most highly resolved of 
prior measurements (Dahm & Dimotakis 1990) give the maximum scalar value as 
2.4 times the local mean at this radial location whereas the present results show 
the highest scalar values in excess of four times the local mean. Consistent with 
these differences in the maximum scalar values, prior results for the scalar 
fluctuation levels from Sc » 1 mixing in turbulent jets yield a normalized scalar 
variance at this radial location no higher than 0.68 (Antonia et al 1975). By 
comparison, the pdfs in figure 15 give normalized variances of 1.06 and 1.08. 
These differences in the pdf shape and its moments are both consistent with 
the higher level of resolution in the present measurements. However some of 
the differences may also be attributable to the corrections for laser beam 
attenuation. It is possible to discern between these explanations by examining 
measurements of Dahm & Dimotakis (1987) that indirectly determine the peak 
scalar value. 

Specifically, these authors used a fast, reversible chemical reaction based 
on the pH sensitivity of laser induced fluorescence from disodium fluorescein 
dye to measure the axial distance required to molecularly mix all the jet fluid with 
ambient fluid to at least a given level. This corresponds to the distance required 
for the fluorescence to completely disappear (the "flame length"), which is both 
an extremely sensitive measure of the maximum scalar value and a relatively 
simple quantity to measure accurately. Changing the pH in the jet and ambient 
fluids showed the mean flame length L to vary with the acid-base stoichiometric 
mass ratio ({) as L/d* ~ 10 <j), and that the maximum fluctuating flame length was 
1.33 times the mean. Here (}> = (l/^s)-l where ^s is the stoichiometric conserved 
scalar value. The maximum flame length for any <}) gives the largest x at which ^s 

will be found, thus the x at which t,max = ^s is (x/d*) = 13.3 [(l/^s)-l]. 
Measurements (Dahm & Dimotakis 1990) show the maximum scalar values on 
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the jet centerline at (r/x) = 0 and at all other radial locations to be the same, with 
(0(r/X)=o = 5.7 (x/d*)-1. Thus the maximum to mean conserved scalar ratio on the 
jet centerline is (^max^O)(r/x)=o = 2-33, and from the radial similarity profile (e.g. 
Dahm & Dimotakis 1987) the ratio of the mean scalar values on the centerline 
and at (r/x) = 0.11 is 2.0, giving the ratio of maximum to mean conserved scalar 
values at the location in figure 15 as (Cmax/(C»(r/x)=o.ii = 4-6. This effectively 
infinitely-resolved value of the maximum scalar value is in good agreement with 
the results in figure 15. This suggests that differences between previously 
reported pdfs for 5c » 1 conserved scalars and the present result are due 
primarily to the higher spatial resolution in the present study. 

4.2 Scalar gradient and dissipation statistics 

In addition to the higher spatial and temporal resolution, the three- and 
four-dimensional nature of the present measurements allows all components of 
the scalar gradient vector field V£(x,f) to be determined directly. Figure 16a 
shows the pdf of the true scalar energy dissipation rate field for the same two 
cases considered above. Note that, as can be seen from the dissipation fields in 
figures 11-13, most of the dissipation values are concentrated near zero, with 
high dissipation rates being rare. This intermittent character of dissipation fields 
in turbulent flows has been known since the earliest measurements of Batchelor 
& Townsend (1949). Classical theories of turbulence (e.g. Kolmogorov 1962) 
suggest a lognormal distribution for dissipation variables to account for this 
intermittency. Figure \6b shows the pdf of log^t, -V£(x,f) for the same two 
cases as in figure 16a, and there is some indication of an at least roughly 
lognormal distribution at large dissipation rates. For this reason, the pdf for case 
R0703 is compared with a true lognormal distribution having the same first two 
moments in figure 16c. Owing to the limited digital resolution of the 
measurements, the range of dissipation rates that can be distinguished does not 
allow accurate assessment of the distribution at very low values. However, for 
relatively high values it can be seen that the lognormal distribution gives a 
relatively good representation of the pdf. 

Figures 17a,b show the joint probability density of the resulting joint 
distributions of conserved scalar and scalar dissipation rate for the same two 
cases considered above, with the contours increasing logarithmically. The joint 
densities verify that the scalar and its dissipation rate are nearly statistically 
independent. These also show that points in the flow with either very high or 
low scalar values tend to have low dissipation rates, with the highest dissipation 
rates typically at points with approximately 80% of the mean scalar value, in 
good agreement with the estimated results of Anselmet & Antonia (1985). 
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These joint pdfs also allow the conditional statistics of the scalar 
dissipation field to be determined. Such conditional dissipation statistics are 
central to conditional moment closure models of reacting turbulent flows (e.g. 
Bilger 1993, Mell, Nilsen, Kosäly, & Riley 1994). Figures 18 a,b show the resulting 
conditional mean and variance obtained from these measurements. The two 
curves for the conditional variance agree quite well, however there are 
differences in the results obtained for the conditional mean. Both curves in 
figure 18a increase monotonically and roughly linearly with increasing scalar 
values. At high scalar values the curves become choppier due to the scarcity of 
points having simultaneously large values of the scalar and dissipation rate. 
While it is apparent that, at the absolute maximum conserved scalar value, the 
conditional mean dissipation rate must be zero, this drop in the curve 
apparently must occur very abruptly in the far tail of the conserved scalar pdf, 
where the result becomes statistically irrelevant. Putting aside the limiting form 
of the conditional statistics at these very large scalar values, it is possible to 
understand the shape of these curves based on the fundamentally layer-like 
topology of the scalar dissipation field apparent in figures 11-13. This is done in 
§6, where the joint pdf of the scalar and dissipation rate are formulated in terms 
of self-similar distributions for the layer endpoints C,+ and ^~. 

4.3 Scalar derivatives 

Figures \9a,b give the probability densities for the individual scalar 
gradient vector component fields 3^/3x(-(x,0- The joint pdfs between each pair 
of scalar gradient vector components are shown in figures 20a-c. One of the 
features of interest in figures 19a, b is the scaling of the tails of these distributions 
at very large positive and negative derivative values. Unless these tails are 
exponentially decreasing, moments of the distribution above some order will 
become divergent. Certain descriptions of the internal intermittency at the 
small scales of turbulent flows lead to predictions of nondiverging moments 
only up to finite order, and thus it becomes important to examine the scaling at 
large gradient magnitudes. Note that exponential tails in these distributions 
would appear as straight lines for the semi-logarithmic axes shown. There are 
indications of an approach to exponential scaling in the results figures 19a,b, 
however owing to the rare occurrence of very large gradient magnitudes, the 
statistics in the tails converge only very slowly. For a perfectly isotropic scalar 
field, the distributions of all three gradient vector components in figures \9a,b 
would be identical, yet there are small differences discernible (note that the 
vertical axis is logarithmic). Moments of each of these pdfs, when normalized 
with the inner scales XD and (Q, show the rms gradient in the x, y, and z 
directions to be, respectively, 0.20, 0.18 and 0.25 for case R0703 in figure 19a and 
0.19, 0.21 and 0.24 for case R0806 in figure 19b.   The consistently higher gradient 
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magnitude in the z-direction appears to result from (i) small motion in the scalar 
field between successively acquired planes in the three-dmensional data volume, 
(ii) errors incurred in the deconvolution procedure, which is an inherently 
noise-amplifying process, and (Hi) possible systematic errors that 
underestimate the interplanar spacing Az. A mean flow correction is introduced 
in §4.4 to partly account for the effect in (i) by assuming that the scalar field is 
frozen and moves with the mean velocity. 

4.4 Gradient vector orientations 

A different view of anisotropy in the scalar gradients is shown in figures 
2la,b, which show the probability densities for the angles $ and cp giving the 
orientation of the scalar gradient vector field V£(x,f), as shown in figure 10. In 
an isotropic scalar field, owing to the fact that the scalar gradient vector points in 
all directions with equal probability, the pdf of $ will be constant at the value 
1/(271), while the spherical geometry requires the pdf of (p to vary sinusoidally as 
1/2- sin(cp). These isotropic distributions are compared with the measured -r> and 
cp distributions for the same cases considered in figure 19- The very sharp, 
narrow peaks located in both the ■& pdf s at -n, -7t/2, 0, 7t/2, and 7t are the result 
of differentiating the discrete scalar field data. Note that case R0703 has broad 
peaks around ö = 0 and TC, suggesting slightly more gradient vector content in 
the x-derivatives than in the y-derivatives. There was some evidence for this in 
figure 19, as well as in the joint pdf in figure 20a. These peaks, however, account 
for only slightly more than 5 percent of the total probability, and appear likely 
to be due to incomplete convergence of these derivative statistics. 

Putting aside any differences presumably due to incomplete convergence 
of the statistics, it is apparent in figure 21a that there are small peaks in both 
curves near ö = -Jt/4 and 37C/4, and valleys in both curves near ö ~ n/4 and -3TE/4. 

These orientations coincide with the principle strain axes of the mean flow. 
Taking into account both the mean axial and radial velocities at the measurement 
location, the mean strain rate field has its most compressional principal strain 
axis aligned along ■& ~ -49° and 131°, and its most extensional principal strain axis 
aligned along # = 41° and -139°. Owing to the dynamics of the scalar gradient 
vector, there is a strong tendency for the scalar gradient to align with the most 
compressive principal strain axis of the instantaneous strain rate field, and an 
equally strong tendency for the gradient to rotate away from the most 
extensional instantaneous principal strain axis. While the instantaneous strain 
rate field varies, on average the principal axes will align with those of the mean 
flow. Thus the peaks and valleys in figure 21a at these ■& values are due to a weak 
anisotropy at the small (inner) flow scales imposed directly by the mean (outer) 
flow scales.    This departure from complete small scale isotropy leads to an 
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overall sinusoidal shape to the $ pdf s in both cases. 

Figure 21b compares the distribution of cp values for the same two cases 
with the isotropic distribution. The measurements in both cases display a dip 
away from the isotropic form near cp = TC/2, so that the gradient vector has a 
disproportionate tendency not to lie in the x-y plane. It appears likely that this 
is a manifestation of errors in determining the z-component of the scalar 
gradient, as noted above. The slight motion of the flow between the acquisition 
of one plane and the next causes an apparent gradient to be produced in the z- 
direction if the local velocity vector points significantly in the direction of the 
local scalar gradient vector. A mean flow correction to the z-derivative was 
introduced to partly account for this by assuming the scalar field to be frozen 
and moving at the local mean velocity. The resulting (p pdf is shown in figure 22 
where it can be seen that this mean flow correction drives the pdf closer to its 
isotropic form, but that a mean flow correction alone is not sufficient to account 
for much of this effect. 

5.  Spectral and wavelet analyses 

The dense spatial content of these data also permit analyses of multi- 
point statistics that are central to descriptions of turbulent flows based on 
concepts from classical statistical mechanics. This section uses the highly- 
resolved spatio-temporal nature of these data to examine the high frequency 
portion of spatial and temporal scalar energy spectra, and wavelet bases are used 
to extract length scale distributions from the conserved scalar and dissipation 
fields. 

Classical theory for locally homogeneous, isotropic turbulence at 
Reynolds numbers sufficiently high for an inertial subrange suggests a k~5/3 

power law scaling for the spatial spectrum of the kinetic energy field in the 
inertial range of scales. Similar arguments can be applied to the scalar energy 
spectrum, and measurements suggest that this also follows, at least 
approximately, a £~5/3 form in the inertial range as well (Gibson & Schwartz 
1963; Grant, Hughes, Vogel, & Moillet 1968). For yet higher wavenumbers, 
Batchelor (1959) argued that, when Sc » 1, owing to the disparate dissipative 
scales Xv and XD in the scalar and kinetic energy fields, the scalar spectrum 
should follow a fc-1 form for wavenumbers kv « k « kD where kv = 2tt/Xv and kD = 
2nfkD. For k > kD Batchelor's theory suggests an exponential roll-of, giving the 
one-dimensional scalar spectrum at high wavenumbers [in the notation of 
Williams & Paulson (1977)] as 
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EAklkB) = 
WD)1/2(%) 

^A. /  IKB; — 3/4 

((e) /vy 
N(B) 

B 
JN(y)dy (9) 

Here <x> is the mean scalar energy dissipation rate and <£> is the mean kinetic 
energy dissipation rate (which for present purposes is estimated from 
measurements in axisymmetric turbulent jets by Taulbee, Hussain, & Capp 
(1987). N(B) is given by (2TC)-

1/2
 exp(-BV2) with B s (2q)m (kfkE), where kB is the 

characteristic wavenumber of the Batchelor scale and q is a constant that relates 
the magnitudes of the maximum compressive and extensional principal strain 
rates. Batchelor suggested q = 2, however experimental studies have suggested 
values as high as six (Williams & Paulson 1977). 

The three-dimensional spatial nature of these data (e.g. figures 11-13) 
allows the three-dimensional spatial scalar spectrum E^k) to be determined. 
Such measurements have not previously been possible. Moreover, the three- 
dimensional spatial scalar spectrum then allows determination of the spherical 
spectrum E^(lkl). For homogeneous, isotropic turbulence, the one-dimensional 
spectrum E^k) in (9) and the isotropic spectrum function E?(lkl) are related (e.g. 
Tennekes & Lumley 1972) as 

*w = *3j; £r(N) = *3 
k    dk 

(10) 

Integrating Ec(k) into its three one-dimensional spectra EAJc-) allows an isotropy 
test through this equation. Note from (10) that any power law scaling E^k) ~ kP 
will also appear in £^(lkl). 

5.1  One-dimensional spatial spectra 

Spectra were obtained using the FFT algorithm of Press et al (1992), and 
are typically presented in Kolmogorov-normalized form as 

E (kK) = ^r- ■ <n> "*  K    n«2K 
Here nK

2 = <x)(v/(e»1/2 is the square of the Kolmogorov scalar scale, XK = 
(v3/(e))1/4 is the Kolmogorov lengthscale, andfcK= k XK, with the normalization 

l£2) = )E^{k)dk   . (12) 
o 

5.1.1 Spatial spectra 

Results are given in figure 23a for the three one-dimensional spectra in 
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the x, y, and z directions, together with Batchelor's spectrum in (9) for q = 5. 
Owing to the nominally 256 3 points in each spatial data volume the range of 
wavenumbers covered necessarily narrow, and owing to the high resolution lies 
deep in the dissipation range. Nevertheless insights about the possible validity 
of Batchelor's spectrum are possible. In particular, there is a possible 
asymptotic approach to a k~l scaling in figure 25a. The peak in the dissipation 
spectrum in figure 23b allows the scaling at lower wavenumbers to be more 
readily discerned, and also supports a possible approach to the kl scaling 
consistent Batchelor's power law regime. 

While all three one-dimensional spatial spectra in these figures appear to 
asymptote to the Batchelor spectrum at the lowest wavenumbers, there are 
large disparities between them in the dissipation range. The x and y spectra are 
in relatively good agreement except at the highest wavenumbers where various 
noise sources dominate. The z-spectrum, however, shows considerably more 
high-frequency content than the x- or y-spectra. It appears likely that this is due 
to the slewing and other effects mentioned in §4.3, which will contain a fairly 
wide range of frequencies, with the slewing effect providing the lowest 
frequency contributions. While the motion from plane to plane within the cube 
is small, it becomes significant over the time AT for a full 2563 spatial data 
volume is acquired. 

The three one-dimensional spatial spectra are compared in figure 24 with 
temporal scalar spectra obtained by Clay (1973) for Sc ~ 7 and 0.7 using Taylor's 
hypothesis. Clay's Sc ~ 7 result is from single-point time-series measurements 
of temperature in the wake of a sphere in water at Re = 27,600, while the Sc ~ 0.7 
results are from temperature measurements in a heated air jet at Re = 100,000. 
Note that the shift in wavenumber between the dissipation regions is consistent 
with the expected 5c1/2 dependence. In the following section, a more direct 
comparison of temporal spectra is made from the time information in the 
present four-dimensional measurements. 

5.2 Temporal spectra 

The fully four-dimensional spatio-temporal measurements, such as case 
R0811, provide temporal record lengths of up to 4096 points, which far exceed 
the comparatively short 256-point spatial record lengths available within the 
three-dimensional data volumes. For comparison with spatial spectra, the 
temporal separation between points is converted to a spatial separation via 
Taylor's hypothesis as Ax = u ■ AT. Here u is the expected mean velocity at the 
measurement location and AT is the time between data volumes as given in 
Table 4.   The resulting Ax is comparable to the spacing between points in the 
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spatial data . These spectra span the range of frequencies kv <k < kD, allowing a 
closer test of any asymptotic approach to Batchelor's k~[ scaling in this range. 
The spectra were averaged from 575 such temporal records, spaced 10 pixels 
apart in both the x and y directions in the three-dimensional spatial data. This 
yields well-converged spectra at intermediate and high frequencies, but the 
correlation between the temporal records from neighboring points is 
significant at low frequencies. 

The resulting temporal spectrum is given in figure 25, where the Clay 
(1973) results for Sc ~ 0.7 and 7.0 are shown for comparison, and in figure 26 
where the comparison with Batchelor's prediction is shown. The spectrum in 
figure 25 is slightly higher than Clay's results, apparently due to differences in 
the estimated mean scalar dissipation rates. More relevant to the present 
measurements is the form of the spectrum in the viscous-convective range in 
both figures. Note that there is no real agreement of the present temporal 
spectrum with the -1 scaling in Batchelor's spatial theory. If there is any power- 
law scaling in this range, it appears to be closer to a -1.3 scaling, in apparent 
agreement with Miller (1991). 

Given the spatial character and resolution of these measurements, they 
appear to give the only data to date capable of extracting the spatial scalar 
spectrum at high wavenumbers. In this sense, these measurements are uniquely 
suited to test Batchelor's theory in (9) for the spatial spectrum. Indeed, the 
results obtained in figure 23 for the high wavenumber spatial spectrum appear 
to show a possible asymptotic approach to Batchelor's theory at the lowest 
wavenumbers accessible to these measurements. Perhaps equally important, 
however, is that these results for the spatial spectrum seem to agree much 
better with Batchelor's theory than do the temporal spectra in figure 26. The 
temporal spectrum, of course, involves Taylor hypothesis which might be 
responsible for at least some of the poorer agreement obtained. In addition, 
the pockets of ambient fluid resulting from the intermittency of the turbulence 
within the jet may artificially enhance the energy content in the low frequency 
portion of the spectrum, and this could account for the steeper slope observed 
in the temporal spectrum. In any case, it does appear that the roll-off at very 
high wavenumbers, even in the spatial spectra in figure 23, does not seem to 
agree well with Batchelor's result. Collectively, these results suggest that the 
high frequency form of both the spatial and temporal spectra associated with 
large Sc scalar mixing in turbulent flows appears to be far from a closed issue, 
either theoretically or experimentally (see also Miller 199D- Moreover, the 
inability of direct numerical simulations to address this issue, owing to the 
extreme resolution demands posed by the Sc » 1 requirement, suggests that its 
resolution will require experiments capable of addressing the high wavenumber 
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spatial spectrum. 

5.3 The three-dimensional spectrum 

The three-dimensional (2563) spatial character of the present data allows 
the first direct experimental determination of the three-dimensional scalar 
energy spectrum £c(k). This spectrum was determined from the same three- 
dimensional spatial data volumes as were the one-dimensional spectra in §5.1. 
Each 2563 volume was divided into 8 x 1283 subvolumes, with a separate three- 
dimensional spectrum computed for each. The ensemble average of these 
individual three-dimensional spectra is shown figure 27a. Each of the planes 
shows an intersection through the three-dimensional wavevector space k at a 
constant kz value. 

Effects of various noise sources appear as three minor peaks in relatively 
compact frequency ranges. The most prominent is at large ky and small values 
of kx and kz, the next largest is the ridge near (ky, kz) = (0, 0) leading to a sharp 
peak at large kx, and the third occurs at large values of kz and small values of £x 

and ky. Harmonics associated with these peaks are also evident, but at much 
lower energies. Each of these noise signatures can be traced to various aspects 
of the measurement technique. Noise in the photodiode array has two primary 
readout components, one that causes the signal to vary from row-to-row, 
resulting in the peak in ky near (kx, kz) = (0, 0), and one that manifests itself in a 
column-to-column variation, leading to the peak in kK near (ky, kz) = (0, 0). High 
frequency noise in the z-direction is introduced by the very small motion of the 
scalar field between the successively acquired z-planes, resulting in the peak 
seen where kz is large and (kx, ky) = (0, 0). Consistent with the approach taken 
throughout this study, the spectrum will be used in this form without any 
filtering, remaining cognizant of the various noise sources. 

In figure 28, the calculated one-dimensional spatial scalar spectrum in the 
outward radial direction is compared against that resulting from integration of 
the full three-dimensional spectrum in the other two directions. Good 
agreement between the two spectra can be seen. In addition it is possible to 
integrate the three-dimensional spectrum in figure 27 over spherical shells in the 
wavevector space k to obtain the isotropic spectrum function. Since the full 
three-dimensional spatial spectrum has not been available to any previous 
measurement, this spherical spectrum has instead traditionally been calculated 
under the assumption of isotropy using (10). Here however, no such isotropy 
assumption is necessary and f;(k) can be integrated directly. The result is 
shown in figure 29, where this spectrum is compared to the individual one- 
dimensional spatial spectra.    All four spectra have been normalized with the 
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measured scalar variance in (12). Slewing effects appear to account for the 
higher z-spectrum values at large wavenumbers, but at least some of the 
differences in the x- and y-spectra appear to be genuine departures from 
isotropy, since as noted in §4.4 there appear to be measurable anisotropies in 
the scalar gradient field created from the principal strain rate field imposed by 
the outer scales on the inner scales. 

5.4 Wavelet spectra 

Fourier spectra of the type in §5.1-5-3 form the basis of much of classical 
turbulence theory, in which infinitely wide basis functions (sinusoidal frequency 
components) are used to decompose the subject turbulence fields. However, 
the resulting conjugate relationship between the representations of these fields 
in the spectral and physical domains does not appear well suited to the highly 
localized sheet-like scalar dissipation features that apparently underlie turbulent 
mixing fields, as is evident in figures 8-14. The more highly localized these 
features are in the physical domain, the more broadly distributed they become 
in spectral representations of the type in figures 23-29, rendering lengthscale 
information difficult to extract from such Fourier spectra. This is common in a 
wide range of fields dominated by highly intermittent phenomena. Wavelet 
transforms provide an alternative decomposition that retains localized basis 
functions in both the physical and spectral domains, and as such are well suited 
for identifying characteristic lengthscales. Applications of wavelet analysis to 
turbulent flows have been undertaken by Lewalle, Petagna, Buresti, & Beux 
(1994), Lewis & Gharib (1992), and Dallard & Browand (1993). Here we examine 
the use of wavelet decompositions to identify the lengthscale distribution of the 
scalar dissipation layers seen in §3- 

The one-dimensional wavelet bases considered here are 

gi(Kx) = ice exp(-K2x2/2) (13a) 

g2(Kx)  =  (KW-I) exp(-K2xV2) (136) 

shown in figure 30, with the latter being widely referred to as the "Mexican hat" 
wavelet, and with the factor 1/K setting the wavelet scale. Note that the g{ 

wavelet tends to pick out gradients, and the g2 wavelet, on the other hand, tends 
to find peaks or troughs in the data. The wavelet transform is computed by 
passing the wavelet basis g of various sizes over the data / and evaluating the 
integral in (14) at all points in the domain for each wavelet scale 1/K as 

F(K,*)=JK"7($)S(K($-*))^ . a4) 
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with the local spectral power density given by 

E(K,X) = —\F(K,X)\    . (15) 
2% 

The choice of wavelet basis g determines what types of features are emphasized 
in the data. 

Figure 31a shows an example of the gx wavelet spectrum obtained for a 
one-dimensional intersection along the x-direction through the conserved scalar 
field for case R0703. Note that the color scale is logarithmic. The wavelet scale 
1/K is shown on the vertical axis; note that this scale is logarithmic as well. This 
is an inverse measure of the scale transforming factor K, and indicates the scale 
of the wavelet in multiples of the inter-point spacings Ax. For example, a 
wavelet of scale (1/K) = 10 corresponds to the wavelet basis in figure 30, which 
unsealed extends 4 points in either direction, and when scaled by this factor 
would extend 40 points in either direction, for a total width of 80 Ax. Since the 
nature of the gj wavelet is to pick out gradients, peaks in the wavelet spectrum 
£(K, X) coincide well with those spatial locations x at which transitions in scalar 
value occur in the one-dimensional scalar profile. In figure 31b, the gl wavelet is 
used to analyze the structure of the scalar dissipation field along the same one- 
dimensional intersection. Note that the nearly Gaussian shape of the internal 
structure within the scalar dissipation layers is evident in these profiles. As was 
the case for the scalar field intersections, the results obtained for the gx wavelet 
are sensitive to the slopes of these profiles. In effect, the spectral energy E(K, X) 

measures the correlation at each x-location between the chosen wavelet basis g, 
stretched by the scale 1/K, and the scalar field data. 

Analogous results for the g2 wavelet are shown in figure 32. Notice that, 
unlike the scalar field spectra in figures 3la,b, the peak magnitudes in the 
dissipation spectra in figures 32a,b depend on the choice of wavelet basis, and 
are typically an order of magnitude lower. Since the nature of the scalar energy 
dissipation field is to peak and return to zero between each layer, the large scale 
variations in the data are mostly removed. Moreover, at the smallest wavelet 
scales, there is much finer variation in the wavelet spectra £(K, X) than was the 
case for the scalar field data. Note also that the highest peaks in the dissipation 
field spectra typically occur at lower values of the wavelet scale 1/K, i.e. the 
dissipation field structures correlate better with wavelets of a smaller size. Thus 
with proper choice of wavelet basis, depending on the features whose scale 
information is sought, the distribution of length scales in the turbulent fields can 
be ascertained from their corresponding wavelet spectra E(K, x). 

Wavelet spectra for the g2 basis can be computed for one-dimensional 
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intersections through the conserved scalar field, and then ensemble-averaged. 
The resulting average £(K, X) is shown in figure 33. The red bands near the two 
edges indicate where the spectrum is affected by wrap-around due to the finite 
spatial domain. A profile through this average spectrum, taken at the center x- 
location (where this wrap-around effect vanishes) is shown at the top of figure 
33, where the inverse wavelet scale k is roughly analogous to the spatial 
frequency in the Fourier spectra. Due to the purely dimensional grounds on 
which Batchelor's k~x scaling in the viscous-convective range can be derived, the 
same power law scaling should also apply to the average wavelet power 
spectrum as well.  In fact, the scaling at low K appears to be very nearly K-1-2. 

5.5 Dissipation layer thicknesses 

The present interest in the wavelet transform is primarily for measuring 
the distribution of thickness scales of the scalar dissipation layers. For this 
purpose, the negative of the g2 wavelet at least grossly resembles the Gaussian 
internal profile of the dissipation layers, and thus would appear to be a good 
basis for determining the layer thicknesses. From the sample results in figures 
32/?, the relative size of the dissipation structures can be identified at each spatial 
location x from the variation in wavelet energy £(K, X) with the scale 1/K. 

Specifically, at the x-location of every local maximum in any one-dimensional 
intersection through the dissipation profile, the wavelet power spectrum £(K, X) 

is examined to find the first peak occurring along the 1/K direction. These peaks 
correspond to the scale at which the wavelet is a local "best-fit" to the 
dissipation profile. The resulting "best-fit" thicknesses (1/K) determined from 
the wavelet spectrum is then converted to the dissipation layer thickness 
(kD)2Q% by "matching" to the corresponding thickness of a Gaussian profile 
given by g(Kx) = exp(- K2*2). Thus the characteristic thickness of the negative of 
the g2-wavelet in (13b) is also determined by the point at which g2 is 20% of its 
maximum value, namely ice = 0.845. Since the wavelet transform as described 
here operates on one-dimensional data, the apparent thickness of the 'best-fit' 
wavelet in the one-dimensional intersection through any dissipation layer must 
be corrected to account for the layer orientation. Since the scalar gradient 
vector orientation is known at every point (see figure 10) it is a simple matter to 
convert the one-dimensional best-fit thickness to the true layer-normal 
thickness. In practice, only dissipation layers oriented within 45° of the 
intersection line were examined to reduce the sensitivity to errors in the 
calculation. 

The data for case R0806 were analyzed in this manner, and the dissipation 
layer thickness distribution determined based on this wavelet spectrum 
approach.   The result is given by the solid line in figure 34, where the resulting 
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thicknesses (^D)2o% are shown both in absolute terms (mm) as well as 
normalized as in (6), where the scaling constant A can be inferred directly. 
Based on the previous estimate of 11.2 for the scaling constant A, Table 3 
predicted a mean dissipation layer thickness (^0)20% -0.21 mm. This appears to 
be in fairly good agreement with the result in figure 34, where the wavelet-based 
distribution gives the mean thickness as 0.26 mm, the median thickness as 0.23 
mm, and the modal thickness as 0.19 mm, as indicated in Table 5 a. Table 5b 
gives the resulting values for the scaling constant A in (6) based upon these 
measures of the thicknesses. Note that resolution limitations preclude very 
small values, thus the median and modal thicknesses are probably more 
representative of the true mean dissipation layer thickness. Note that these 
values obtained from the wavelet technique are in good agreement with the 
estimated layer thickness. 

While this wavelet approach provides a relatively simple integral 
technique for estimating the distribution of dissipation layer thicknesses, the 
thickness obtained can depend on the neighboring dissipation field. In 
particular, owing to the "wings" in the wavelet bases, the peaks and valleys 
formed by the neighboring layers combine to produce a 'best-fit' wavelet that is 
smaller than that for an isolated layer. Such interacting layers are not uncommon 
in the experimental data, as can be seen in figures 8-14. For this reason, a related 
approach was developed based on the correlation between the dissipation field 
and a Gaussian shape, which does not have such "wings". Unlike the g2 wavelet, 
the Gaussian shape does not have zero area, and so the correlation will not show 
a peak at the 'best-fit' scale. Instead, the 'best-fit' scale (1/K) is obtained when 
the normalized correlation 

J/($)*(K(I;-*))<£ 
R = ^—^  (16) 

f{x)      Js2MK 
crosses unity. Here f(x) is the field of interest (in this case a one-dimensional 
intersection through the scalar dissipation field) and g(x) is a Gaussian basis given 
by g(Kx) = exp(- K2x2). The dissipation layer thicknesses obtained by applying 
this correlation technique to the same data used above produces the distribution 
given by the long-clashed line in figure 34. This distribution gives the mean 
dissipation layer thickness (X.D)2o% = 0.32 mm, the median thickness as 0.30 mm, 
and the modal thickness as 0.25 mm. 

Previous measurements of this thickness distribution by Buch (1991), on 
which the estimate of 11.2 for the scaling constant A in (6) was based, used the 
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local layer-normal profile integral moments to estimate (A,D)2o%- In that 
approach, first and second moments of the local one-dimensional layer-normal 
scalar dissipation profiles are calculated, and the thickness determined by 
assuming a Gaussian dissipation profile with the same moments. The 
distribution obtained by applying this approach to the present data are shown 
by the short-dashed line in figure 34. The peak in this distribution gives the 
modal thickness for (A.o)20%as 0-22 mm, in good agreement with the estimate in 
Table 3 based on the measurements of Buch (1991). 

6.  Structure of the dissipation layers 

The previous sections presented various results from the present highly 
resolved, four-dimensional, spatio-temporal measurements of the structure of 
scalar mixing at the small scales of turbulent shear flows. These have shown that 
essentially all of the scalar energy dissipation field is concentrated in thin sheet- 
like scalar dissipation layers, and have established certain statistical and structural 
properties, in both the physical and spectral domains, that result from this 
layered structure. This section will examine aspects of the internal structure 
within these scalar dissipation layers. A previous experimental investigation 
based on two-dimensional measurements by Buch (1991) examined the shapes 
of the scalar dissipation profiles across these layers for both Sc » 1 and Sc ~ 1 
mixing in turbulent shear flows. Here a study of the internal structure of the 
scalar and dissipation profiles within these layers is undertaken with the aim of 
understanding the effects of the local scalar differences on these layer profiles, 
and how the scalar differences act to determine the joint pdf's in figure 17 and 
the resulting conditional dissipation statistics in figure 18. The results obtained, 
together with the scaling of the distribution of layer separations in §8, give a 
relatively simple physical model of the small scale structure of conserved scalar 
mixing in equilibrium turbulent shear flows. 

6.1 Layer-normal profiles 

In a translating and rotating Lagrangian coordinate frame moving with any 
chosen material point in the flow and remaining aligned with the local 
instantaneous principal axes of the strain rate tensor, the local velocity field in 
the vicinity of the origin reduces to a spatially uniform but time-varying pure 
strain field determined by the three principal strain rates e, j > £22 ^ £33. As 
noted by Buch & Dahm (199D, in constant-density flows the local velocity field 
in this frame can therefore be reduced to a single parameter o = £22 /£33 

describing the structure of the local strain rate tensor, with el { simply serving to 
rescale the time. Two classes of local flows are thus possible, namely G < 0 
corresponding to two extensional and one compressional principal strain axes, 
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and a > 0 corresponding to one extensional and two compressional principal 
axes. Kinematics dictate that the o < 0 flows will distort any material volume 
toward a sheet-like topology, while the G > 0 class will form line-like topologies. 
In both cases, the resulting V^(x,f) will rotate toward alignment with the most 
compressive principal strain rate axis. Exact solutions of the Navier-Stokes and 
conserved scalar transport equations in this local frame are possible for the 
limiting cases given by a = -1/2, 0, and +1. The latter corresponds to a locally 
axisymmetric compressive strain field that forms line-like structures in the 
vorticity and scalar gradient fields, while the former two correspond to planar 
strain rate fields that lead to the formation of sheet-like gradient structures. As 
shown by Buch & Dahm (1991), the presence of a stretching term in the 
vorticity transport equation, and the absence of an analogous term in the scalar 
transport equation, allows the line-like gradient structures to be indefinitely 
sustained in the vorticity field, but leads to exponential decay of similar line-like 
structures in the scalar gradient field. On the other hand, both the vorticity and 
scalar gradient fields can indefinitely sustain sheet-like structures. In the scalar 
field, this sheet-like solution corresponds to a scalar gradient layer between two 
otherwise uniform scalar values C,+ and £-, for which the average scalar value, V2 

(^+ + t,~), and the scalar difference, (^+ - C,~), remain constant in time, and the 
one-dimensional scalar field has an error function profile along the layer-normal 
coordinate n of the form 

C = i(C++r) + ;(C+-Oerf a— 
V     ^-D J (17) 

where n = 0 is the layer center and the error function is defined as 

2 
erf(^) = ^Jexp(-r|2Wr| 

(18) 

Equation (17) leads to a Gaussian profile for the scalar energy dissipation rate 
across such a layer, given by 

K 
(C+-C) 

An 
exp 

n 
a — 

(19) 

Note that a = 1.79 was introduced in (17) so that X,D corresponds to the 
same definition used throughout this study, namely the full width of the 
dissipation profile where the dissipation rate drops to 20% of the profile peak 
value.   Eliminating the spatial coordinate n from (17) and (19) gives the mapping 
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between the scalar dissipation rates and the conserved scalar values for a layer 
with thickness A.D and scalar endpoints C,+ and t,~ as 

v^-v? 

(C+-DAD 

a' 
= —exp 

7t 
-2 erf- 

-i\2' 

(20) 

Figure 35 shows the relation between the conserved scalar and the scalar 
dissipation profiles along several representative one-dimensional intersections 
through the sheet-like dissipation layers in the turbulent flow data from §4. The 
intersections were taken in the direction of the local layer normal n, and scalar 
endpoints determined as described in §6.2 Note that, as suggested by the 
discussion above, none of these layers have scalar endpoints (C,+, C,~) = (1, 0). 
Instead the scalar endpoints, where the dissipation drops essentially to zero, 
vary widely among the layers shown. Notice how the peak scalar dissipation rate 
typically scales with the scalar difference (C,+ - £-) across the layer, as suggested 
by (20). Since the distribution of dissipation layer thicknesses ß(?iD) is fairly 
narrow (see figure 34), the peak values in the layer-normal dissipation profiles 
are determined chiefly by the scalar difference. 

If dissipation layers such as those in figure 35 conform to (20) then, when 
normalized as this equation indicates, the profiles should all collapse to the 
functional form given there. It is shown in figure 36 that this is in fact the case, 
where the solid line is simply the result in (20) for a = 1.79, and the symbols are 
the same as in figure 35. Thus, all of the dissipation profiles in figure 35 are 
merely manifestations of the same strain-diffusion competition that forms the 
basis for (17) - (20). Accordingly, the mixing process in the fully developed 
turbulent flow can be thought of as a collection of locally one-dimensional, 
strained, laminar diffusion layers with varying endpoint characteristics, i.e., 
having different (^+, £~) values satisfying some presumably universal distribution 
relative to (Q. 

6.2 Scalar endpoint statistics 

The local scalar endpoints (^+, £~) throughout spatial data volumes of the 
type in figures 11-13 can be readily determined. The procedure for doing this 
searches along the layer-normal direction from each point on the surface of 
dissipation layer maxima until the local dissipation rate profile decreases to 5% 
of the maximum value along the profile. The scalar endpoints can then be 
computed via (20) from the local combined values (£, V^ -VQ at these two 5% 
points. As a test of the sensitivity of the endpoint determination to the 5% 
criterion, a single 2563 spatial data volume was used to extract £+ and £~ 
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distributions both 5% and 20% as the selection criterion. Excellent agreement in 
both the £,+ and C,~ pdf's is seen in figure 37, showing that the algorithm is 
insensitive to the choice of this criterion. 

Figure 38 shows the joint probability density function of the scalar 
endpoint values for two cases in Table 1. Note that the two distributions agree 
quite well. Since by definition ^+ > £~, the joint pdf occupies only the upper 
portion of each graph, with the dashed line (^+ = £,') forming the boundary of 
possible values. The contours shown are logarithmically spaced, increasing 
successively by factors of two. The lack of any contours very near the £+ = £~ 
boundary results from the minimum scalar dissipation threshold for which the 
layer center algorithm can reliably find clean layer center fields. For the results 
shown, this threshold corresponds to a minimum scalar difference of (^+ - t>~ 
)/(Q = 0.31, which can be compared with the range of scalar values in figure 15a. 
Layers with a scalar difference smaller than this is not included in figure 38. 

Note that, based on the shape of these ß(^+, £-) distributions, it appears 
that for any value of ^+ there is an equal probability of almost any ^~ value 
occurring on the opposite side of the layer. If the two scalar endpoint values 
(^+, (f) were completely uncorrelated, then the single-point scalar pdf in figure 
15 would suggest there should be an increasing likelihood of finding lower £," 
values. Since that is not the case, apparently the scalar correlation over distances 
typically one XD apart offsets the tendency to produce more layers with lower 
£~'s than those with higher ones. 

In addition to the joint pdf in figure 38, the two marginal pdf s ß(^+) and 
ß(£~) are shown in figure 39 for each of the two cases considered. As demanded 
by the requirement that C,+ > C,~, the pdf of ^+ shows a peak at an intermediate 
scalar value, here at about 1.4 times the local mean scalar value, and falls to zero 
at the tails. Below ^+ = 0.5 this C,+ pdf is most likely artificially low, due to the 
dissipation threshold in the layer center algorithm discussed above. The low 
concentration portion of this curve will be affected the most for two reasons: (/) 
low values of the mixture fraction are more common, and (ii) layers with a low 
C,+ have a smaller chance of having a large difference between C,+ and £~. A 
direct result of this is that 1/2<^++ C,~) = 1.53 <Q, and this is clearly too high. 
Based on the results of figures 38a,b, this average value should be approximately 
equal to the mean scalar value in the mixed fluid (excluding C, = 0) if all layers were 
included. By comparison, the mean scalar value obtained from the mixed fluid 
part of the pdf in figure 15, determined by removing the ambient spike, is 1.15. 
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6.3 A model of the small-scale statistics 

On the basis of results from the present four-dimensional spatio- 
temporal measurements of Sc » 1 conserved scalar mixing in turbulent flows 
(see figures 11 - 13), as well as earlier measurements of both Sc » 1 and Sc ~ 1 
scalar mixing by Buch (1991), it appears reasonable to represent the scalar 
mixing process at the small scales of turbulent flows entirely by an ensemble of 
such locally one-dimensional sheet-like scalar gradient layers, in which all the 
mixing is taken to occur. If this is a fair representation of the scalar and 
dissipation rate fields in figures 11-13, then (20) provides a basis for predicting 
the resulting joint distribution ß(^, V£ VQ of these fields, provided that the 
requisite distributions of the layer thicknesses XD and scalar endpoints C,+ and t,~ 
are also known. As was shown here, as well as by the earlier measurements of 
Buch (1991), the distribution of inner length scales ß(XD) appears to be 
universally derivable from the local outer length scale 8 via (3a) and figure 34, 
with the scaling constant A given in Table 5. If, moreover, the distribution of 
scalar endpoints ß(£+, £~) were expressable in terms of the local mean scalar 
value (0, then the joint distribution ß(£, V£ -VQ could in fact be determined 
from this model. At a somewhat greater level of refinement, the distribution of 
layer separations ß(ÄAD) could even be incorporated as well. 

Note that Mell, Nilsen, Kosäly, & Riley (1994) have used direct numerical 
simulations (DNS) of conserved scalar mixing in homogeneous, isotropic 
turbulence during the early stages of mixing, for which (+ and £,- are strictly 
confined to 1 and 0, to show that (20) accurately represents the joint distribution 
of conserved scalar and scalar dissipation rate values under those conditions. 
However, in a fully-developed turbulent flow, such as in the far-field of the 
turbulent jet, or even the long-time evolution in a chaotic mixing flow, the layer- 
like structures in the scalar dissipation field will no longer remain bounded by 
their initial scalar endpoint values of 1 and 0. Indeed, in the later stages of mixing 
the layers necessarily cannot remain bounded by their initial endpoint values. 
Instead, C,+ and C,~ will take on widely varying values corresponding to differing 
degrees of mixing. That can be clearly seen in the turbulent jet mixing results, 
where figure 15 and the mean concentration scaling together show that the peak 
(absolute) scalar values rarely exceed 0.06 and C,+ values are generally even far 
lower than this. Similarly, although the jet continually entrains ambient (£, = 0) 
fluid, this subsequently mixes to produce C,~ values significantly higher than zero, 
as can also be seen from figure 15. Accounting for the effects of these nontrivial 
scalar endpoints requires measuring the distribution ß(^+, C,-) and assessing its 
universality and scaling relative to (Q. 

It should be possible to largely reconstruct the joint pdf ß(^, V^ -VQ, 
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with the above limitations in mind, from (20) and the joint pdf ß(£+, £-). The 
central idea is that the scalar and dissipation rate fields essentially consist of one- 
dimensional, strained, laminar dissipation layers of the type in (20), with their 
scalar endpoints (£+ £,-) satisfying the distribution in figure 38 and their 
thicknesses XD satisfying the distribution in figure 34. Since the distribution of 
layer thicknesses is fairly narrow, for the present purposes the layers are all 
taken to be of the same thickness, though this added refinement could be 
included. Thus, for each (^+, C,~) pair, a layer profile is obtained in which the 
dissipation and the conserved scalar are known at every point through (20). A 
histogram follows in which the value at the pairs (£, V£ -VQ are weighted by the 
probability density of finding a layer with such endpoint values, namely ß(^+,^~). 
The final weighted histogram is a result of all (£, V^ -VQ pairs within the profiles 
resulting from all (^+, £~) pairs. 

Figure 40 shows the joint pdf ß(£, V£ -VQ constructed in this manner for 
case R0703. This can be compared with the result obtained in figure 17a by 
direct measurement. Note that the two distributions are remarkably similar. 
The model result shown here also incorporates the intermittency by accounting 
for zero dissipation rates contained within ambient fluid regions, and therefore 
not contained within layers, and very low dissipation rates that are not included 
in the layer center finding algorithm. The intermittency aspect of this model 
inherently cannot be made universal, since it is intimately tied to the large scale 
structure (outer variables) responsible for the ambient fluid entrainment 
process. 

7.  Layer separation distributions 

One of the objectives of this work is to analyze the structure of the 
conserved scalar and scalar dissipation fields at the small scales of turbulent 
flows. This principally involves the three-dimensional (2563) data volumes 
owing to their larger spatial extent in all three directions. Many of the analyses in 
the subsequent chapters require first determining the three-dimensional fields 
marking the loci of dissipation layer centers. When properly identified, these 
layer maximum fields appear as thin sheet-like representations of the scalar 
dissipation layer centers. These in turn are used to analyze the scalar and 
dissipation rate values in the vicinity of the layer centers, as well to determine 
the layer endpoint characteristics and the layer separation distributions. 

7.1  Layer center algorithm 

An algorithm is used for automatically finding the dissipation layer 
centers.    However, as is often the case in "machine vision" applications, this is 
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more difficult to do well than it might appear. Extensive tests conducted with 
various algorithms revealed features necessary for reliably identifying the layer 
centers in the algorithm that was finally used. This is based principally on the 
scalar gradient vector field V^(x,0- Briefly, the algorithm begins by 
thresholding the gradient magnitude field (the dissipation rate field) at a chosen 
level. The threshold used was typically half the mean dissipation rate, which is 
typically quite low owing to the prevalence of zero and low dissipation rates. 
Next, the algorithm identifies the edges of the regions in which the dissipation 
rate is above the threshold value. To do this, for each point the local unit normal 
vector for the layer is determined based on the local gradient vector 
information. The edges of the layer are then found by marching in both 
directions along this unit normal direction until one of two criteria are met: (i) 
the scalar dissipation at the candidate edge point drops below the chosen 
threshold level, or (//) the dot product between the scalar gradient unit vector at 
the original point and that at the candidate edge point changes sign. The 
resulting edge locations for the dissipation layers are then used to identify 
candidate midpoints representing the dissipation layer centers. A further check 
is made among these candidate dissipation layer center points to insure single 
pixel thickness for the resulting surface before finally admitting a pixel to the set 
of layer center points. This method has proven to work quite well for high 
Schmidt number mixing fields such as these, due to the tendency of the layer 
structures to be locally parallel, but may not work as well for low Schmidt 
number flows since then the dissipation layers are often nearly perpendicular to 
one another [e.g. see Buch (1991)]. 

Figure 42 shows the resulting layer centers identified with this algorithm 
for a complete three-dimensional volume. Note that in the three-dimensional 
representation, the cube is effectively opaque, so only the intersection of the 
sheet-like structure with the cube faces can be seen. Moreover, figure 42 only 
shows the layer centers on the faces of the cube, where the algorithm performs 
the poorest due to the limited scalar field information available on the cube 
faces. 

Tests conducted with synthetically generated surfaces having varying 
levels of imperfection verify that the resulting distribution of layer separations 
can be accurately obtained. An example is shown in figure 43- In figure 43a, the 
dissipation layer centers are shown as obtained by applying the algorithm to a 
synthetic scalar field specified by C,(x) = sin(x2) over 0 < x < 3n. From the 
associated scalar dissipation field, the resulting ideal cumulative distribution of 
layer separations can be obtained analytically, and is shown by the solid line in 
figure 44. When the layer separation algorithm is applied to the discrete data in 
figure 43 a, this gives the result shown by the diamonds in figure 44.   Deviations 
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from the exact result given by the solid line are principally due to the discrete 
(256 x 256) nature of the original scalar field. To then test the sensitivity of the 
algorithm to imperfections in the dissipation layer center fields, a random 
pattern of holes and extraneous layers of various sizes were introduced in figure 
45b to qualitatively match similar defects in the layer centers from the turbulent 
and chaotic flows. The layer separation distribution resulting from this 
imperfect layer center field is shown by the "+" symbols in figure 44. Note that 
except for veiy small separations, where the discrete nature of the data presents 
the greatest difficulties, the resulting distribution still follows the ideal 
distribution quite well, even in this intentionally noisy field, suggesting that the 
algorithms developed here are sufficiently robust to provide reliable results for 
both the chaotic and turbulent flows. 

7.2 Dissipation layer separations 

Probability densities of dissipation layer separations were computed for 
each of 29 individual three-dimensional 256 3 spatial data volumes of the type 
shown in figures 11-13 from the turbulent flow measurements. These volumes 
were equally spaced in time, and spanned slightly more than 2.5 outer scale turn- 
over times (8/60 of the flow. Note that the scalar field within any such volume 
represents the signature of the mixing process at the small scales of the flow. 
The dissipation layer separation distribution resulting from ensemble statistics 
over the entire set of spatial data volumes is shown in figure 45. A roughly -3 
power law scaling can be seen in the distribution of layer separations over this 
range of length scales, reminiscent of the power-law scale-similarities typically 
found in high Reynolds number turbulent flows. 

Although the ensemble-averaged distribution exhibits this -3 power law 
scaling, the individual dissipation layer separation distributions vary considerably 
from one data volume to the next, as shown in figure 46. The -3 scaling appears 
to result only from averaging over many such individual uncorrelated volumes, 
but is not evident in any single volume. However, while the distribution varies 
significantly at large layer separations, for small separations the results for all 
volumes are nearly the same. The distributions for small separations are 
essentially invariant and show a roughly lognormal scaling, while for large 
separations the distributions are very different. In chaotic flows, the 
multiplicative processes that lead to rapid generation of small separations with 
lognormal scaling in regions of high strain (large stretching values) are fairly well 
understood. Moreover, in chaotic flows the presence of low stretching values 
leads to locally strong departures from lognormal scaling for large separations. 
It might be tempting to speculate that similar dynamical processes may control 
the scaling characteristics of the mixing process at these scales in turbulent 
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flows. However, there are important differences between closed chaotic flows 
and open turbulent flows. In particular, closed chaotic flows initially require that 
repeated iterations must lead to reductions in the separation distances of 
dissipation layers. In open turbulent flows, however, ambient fluid is continually 
entrained into the mixing region, creating voids in the dissipation field which are 
subsequently broken down by the stretching and folding process. The large 
separations in the turbulent flow result principally from this entrainment 
process, and the -3 scaling in the ensemble-averaged distribution is merely the 
result of the distribution of large voids created by the entrainment and their 
subsequent breakdown ("cascade") process. In the chaotic flow, the breakdown 
of the initial voids might be expected to occur by a different process, leading to 
a different scaling of the dissipation layer separations. 

8.  Discussion and Concluding Remarks 

This study has provided the first fully-resolved four-dimensional, spatio- 
temporal measurements of the small-scale structure of scalar mixing in turbulent 
flows. As noted in §1, the aim has been to obtain experimental data on the 
generic physical structure associated with large Schmidt number mixing at the 
small scales of turbulent shear flows. Though the measurements were obtained 
at a particular fixed location in the self-similar far field of an axisymmetric 
turbulent jet, the Reynolds numbers are believed to be large enough for the 
presumed universality of the small scales to be approached. Specifically, as 
summarized in Table 1, these measurements were obtained at outer scale 
Reynolds numbers Re5 in the range 2,600 - 5,000, and Taylor scale Reynolds 
numbers Re^ in the range 38 - 52. While these values may seem relatively low in 
comparison with traditional turbulence studies, there is considerable evidence 
in the literature that the physical structure of the small scales in turbulent flows 
establishes itself well before many of the traditional hallmarks of high Reynolds 
number turbulence are reached. These "hallmarks" (such as an extensive k~5/3 

inertial range) are then believed to instead be signatures of this fundamental 
physical structure of the flow that manifest themselves once sufficiently high 
Reynolds numbers are reached, rather than being minimum requirements 
necessary to achieve this fundamental physical structure in the first place. 
Indeed, experimental evidence [Dowling, D.R., Phys. Fluids A 3, 2229-2246; see 
figure 18 therein] shows that the small-scale portion of the Kolmogorov- 
normalized scalar power spectra collapse for Reynolds numbers from 5,000 to 
40,000 even though no k~5n range exists for the lower Reynolds numbers. 
Moreover, recent evidence from direct numerical simulations of turbulent flows 
appears to support this view. In DNS studies with Rex in the range 35-170, 
Jimenez, Wray, Saffman, and Rogallo QFM 225, 65-90] find essentially perfect 
collapse of small-scale spectra (see their figures la and 2a) as well as small-scale 
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vortical structure (see their figures 11a and lib) and, regarding the small-scale 
structure of the flow, these authors state "it is surprising that no obvious increase 
in complication is detected as Rex increases." They conclude that "it is 
surprising that we are able to find similarity laws spanning the whole range of 
Reynolds numbers, and that even the lowest-/?^ flow seems to be essentially 
turbulent." Collectively, these observations suggest that the Taylor-scale 
Reynolds numbers accessible to these measurements are indeed large enough 
for the small scale structure to approach its Reynolds number asymptotic state. 
As a consequence, the results obtained here are believed to be largely 
representative of the universal small scale structure of Sc » 1 conserved scalar 
mixing in all high Reynolds number turbulent shear flows. 

The present measurements are unique both in terms of the four- 
dimensional spatio-temporal nature of the data and the simultaneous spatial and 
temporal resolution and signal quality they represent. As regards the first point, 
in many ways the nature of the data from these measurements is more 
comparable with data from direct numerical simulation (DNS) studies of 
turbulence than from traditional experimental studies. Indeed, the Taylor-scale 
Reynolds numbers achieved in these experiments are only about one-and-a-half 
to two times lower than in most simulations, and the Schmidt number here far 
exceeds that accessible to any DNS study. In this sense, experimental 
measurements of this type are a necessity for investigations of the small scale 
structure of Sc » 1 scalar mixing in turbulent flows. Moreover, the dense four- 
dimensional spatio-temporal character of the data is fundamentally different 
from the traditional single-point time series data classically associated with 
experimental studies of turbulent flows. Similarly, unlike traditional time series 
data, the fully resolved nature of the present data in all three spatial dimensions 
as well as in time allows direct simultaneous differentiation in both space and 
time. Finally, owing to the exceptional signal quality and the high resolution of 
the measurements, the resulting derivative fields are manifestly smooth without 
the need to resort to explicit smoothing or filtering such as is commonly 
employed when differentiating experimental data. 

The resulting data have given several new insights into the small scale 
structure of turbulent shear flows. First, these measurements have verified the 
locally one-dimensional, thin, strain-limited, laminar diffusion layer as the basic 
structural element of the scalar energy dissipation rate field, as had been 
suggested by the earlier lower-dimensional measurements of Buch & Dahm 
(1991). Indeed as noted, among the line-like and sheet-like topologies that can 
result from the advection-diffusion competition in §1.1 under differing strain 
rate tensor structures, only the sheet-like topology can be indefinitely sustained 
in the scalar gradient field, while the vorticiry field can sustain both topologies 
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owing to the presence of a stretching term. In this sense, the small scale 
structure of the scalar dissipation field in turbulent shear flows is considerably 
simpler than that of the underlying flow field, from which turbulence largely 
draws it reputation for complexity. 

Moreover, the three-dimensional spatial nature of these data has allowed a 
direct examination of the internal structure of these dissipation layers, and also 
allowed identification of their scalar boundary values tf. In particular, these 
scalar boundary values differ significantly from the (C,+, (,-) = (0, 1) boundary 
values associated with initial scalar interfaces. The distribution of mixed fluid 
states which these boundary values take on lead to very different conditional 
statistics than for the case (C,+, Cr) = (0, 1) dealt with in the early-time simulations 
of Mell et al (1993). Once these scalar boundary value distributions are taken into 
account, the fundamentally layer-like structure of the dissipation field leads to 
the joint statistics in figure 17, as verified by the model result in figure 40. 

Moreover, these fundamentally layer-like dissipation field structures, 
together with the distribution of separations into which these layers are 
arranged by the underlying flow field, leads to the statistical and spectral 
signatures of the mixing process documented in §6. In particular, the scalar 
variance resulting from these structures appears to be much larger than 
previous lower-resolution measurements have suggested. The present 
measurements indicate a normalized variance of 1.07, in contrast to the highest 
values (0.68) reported to date from other investigations. This higher observed 
variance appears to be consistent with the highest scalar values observed, which 
also far exceed any previous results. The present results indicate the maximum 
normalized scalar value to be approximately 4.6, retrospectively consistent with 
previous molecularly-resolved measurements based on chemically reactive 
tracers. As far as the spectral characteristics of these layer-like patterns are 
concerned, figures 23a,b show a possible asymptotic approach to the k~l scaling 
predicted by Batchelor (1959) for the mixing of Sc » 1 scalar quantities in 
turbulent flows. However, at yet higher wavenumbers no agreement with 
Batchelor's theory is obtained. Moreover, when temporal spectra are 
considered (figures 26a,b), no approach to Batchelor's k~x scaling is found, 
suggesting a fundamental difference between these two types of spectra. 

Lastly, analyses of the thickness of these layer-like dissipation structures 
based on wavelet decompositions yield a distribution of thicknesses in good 
agreement with the earlier measurements of Buch & Dahm (1991) based on 
lower-dimensional measurements. For the scaling constant A, the present 
measurements give the median value as 12, with the thickest layers having 
roughly three times this thickness. 
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Case# 
**8 

Re-, 
kg 

/(AMU-3) x (m) r(m) x/d* r/x Nz 

R0420 3,000 41 0.902 1.15 0.127 235 0.11 6 

R0628 3,200 42 1.03 1.15 0.127 235 0.11 6 

R0811 4,200 48 1.77 1.15 0.127 235 0.11 6 

R0212 2,600 38 0.677 1.15 0.127 235 0.11 256 

R0304 2,900 40 0.842 1.15 0.127 235 0.11 256 

R0703 3,700 45 1.37 1.15 0.127 235 0.11 256 

R0806 5,000 52 2.50 1.15 0.127 235 0.11 256 

Table 1. Experimental conditions for each of the seven cases analyzed with Re§ and 
Re\ referring to the local outer-scale Reynolds number and Taylor scale 
Reynolds number respectively. Each case consists of a total of over three 
billion individual point measurements of the conserved scalar field.Note that 
four of these cases are designed to allow detailed three-dimensional spatial 
structure of the mixing process to be determined. These involve temporal 
sequences of nominally 2563 three-dimensional spatial data volumes (see 
figure 2). The remaining three cases are designed to yield fully four- 
dimensional spatio-temporal data spaces, simultaneously differentiable in all 
three spatial directions and in time. 



Wavelength 
X{nm) 

Relative Line 
Strength 

a(k) 

Molar Extinction 
Coefficient 

e(X)-(l(H/m-M) 
514.5 0.392 1.44 
501.7 0.075 8.29 
496.5 0.116 9.70 
488.0 0.262 8.91 
476.5 0.116 6.16 
472.7 0.039 6.05 

Table 2. Measured line strengths a{X) in (5) for the 5W Ar++ laser (Coherent Innova 
70-5) m multi-line emission mode. These line strengths are essential for 
correct conversion from the measured fluorescence intensity field Fx"  to the 

t)ZS^A r SUbSeqUentIy t0 the co/s^SÄ^ 
wavelengths. m°'ar «action coefficients for the individual 



Case# Re, ReK ^n(M"0 \,{\lm) Ax,Ay (|im) Az (urn) Beam (u/n) 

R0420 3,000 41 303 13,800 108 90 191 

R0628 3,200 42 289 13,200 116 120 168 

R0811 4,200 48 239 10,900 107 110 154 

R0212 2,600 38 331 15,100 100 79 234 

R0304 2,900 40 309 14,100 110 88 218 

R0703 3,700 45 257 11,700 109 120 181 

R0806 5,000 52 209 9,520 107 100 154 

Table 3. Spatial resolution characteristics for each of the cases listed in Table 1. The 
local outer scale Reynolds number is Re§= C/8/v, where U and 5 denote the 
length and velocity scales characterizing the local mean shear in the flow, 
namely the local mean centerline velocity and the local flow width. Re\g is the 
local Taylor-scale Reynolds number. The local strain-limited molecular 
diffusion scales for the vorticity and scalar fields are ^v ~ 11.2-5-i?^5_3/4 and 
^D = A-ySc-^2, respectively. Deconvolution of the fluorescence intensity data 
between parallel measurement planes reduces the effective resolution in the z- 
direction from the He laser beam thickness to the interplane spacing Az. The 
spatial resolution achieved in these scalar field measurements is determined by 
comparing the interpoint separations (Ax, Ay, Az) to the local strain-limited 
scalar diffusion scale X^. Note that all cases are fully resolved in all three 
spatial dimensions. 



Case# Re, R% 
XD/M (ms) ÄX (ms) At(ms) AT (ms) 

R0420 3,000 41 152 0.0238 8.87 53.2 

R0628 3,200 42 136 0.0238 8.87 53.2 

R0811 4,200 48 85 0.0238 8.87 53.2 

R0212 2,600 38 187 0.0238 8.87 2,270 

R0304 2,900 40 158 0.0238 8.87 2,270 

R0703 3,700 45 103 0.0238 8.87 2,270 

R0806 5,000 52 62 0.0238 8.87 2,270 

Table 4. Temporal resolution characteristics for each of the cases listed in Table 1. For 
each case, the pixel illumination time is given by Ax, the time between 
acquisition of successive parallel planes is given by Ar, and the time between 
acquisition of the same spatial point in successive volumes is AT. The 
characteristic advection time scale for the scalar field is given by XD/u, where 
A,D is the local strain-limited molecular diffusion scale (see Table 3) and u is the 
local mean velocity. The temporal resolution achieved in these scalar field 
measurements is determined by comparing the measurement time scales (Ax, 
Ar, AT) to the local diffusion scale advection time XQIU. Note that in all cases 
each of the individual data points are fully resolved in time, since (Ax, Ar) « 
XD/U. Additionally, the data in the first three cases are time-differentiable as 
well, since for them AT < XD/u. 



Technique Mean (XD)20% 
(mm) 

Median (XD)20% 
(mm) 

Modal (XD)20% 

(mm) 

g2-Wavelet 0.26 0.23 0.19 

Gaussian 
Correlation 

0.32 0.30 0.25 

Moment 0.30 0.28 0.22 

(a) 

Technique Mean A Median A Modal A 

g2-Wavelet 14 12 10 

Gaussian 
Correlation 

17 16 13 

Moment 16 15 12 

(b) 

Table 5 Measures of the layer thicknesses for the turbulent data of Case R0806. 
Shown are (a) the mean, median, and modal thicknesses determined from 
the distributions of figure 34 for the three separate layer thickness-finding 
techniques listed; (b) the resulting mean, median, and modal scaling 
constant A in (6). Compare against the estimated dissipation layer thickness 
of 0.21 mm given in Table 3 and A ~ 11.2 from measurements for 5c = 1 of 
Buch (1991). 
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Two-Dimensional 
Data Planes 

Three-Dimensional 
Data Volumes 

Four-Dimensional 
Data Space 

256 

FIGURE 2. Schematic showing the structure of the conserved scalar measurement data. 
Each measurement produces the scalar field £(x,f) at over 3 billion individual 
points in space and time, arranged as a temporal sequence of individual three- 
dimensional spatial data volumes. Each of these spatial data volumes are 
composed of a sequence of two-dimensional spatial data planes, which in turn 
each consist of an array of 256 x 256 spatial data points. The spatial separation 
between adjacent points within each data plane, and between adjacent data planes 
within each data volume, is smaller than the local strain-limited molecular 
diffusion lengthscale XD of the scalar field (see Table 3). Similarly, the temporal 
separation between successive points in the same data volume, and between the 
same point in successive data volumes, is given in Table 4. 
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FIGURE 3.  The measured extinction function in (5) for disodium fluorescein dye, obtained 
from absorption measurements for fixed dye concentration c. Shown are: (a) 
the single-line extinction function for the primary 488.0 nm and 514.5 nm lines 
of the Ar++ laser, where the slopes give the molar extinction coefficient e(k) in 
Table 2, and (b) the net extinction function when the laser is operated in multi- 
line mode, showing good agreement between the measured net extinction • 
function and the theoretical result in (5) for the initial line strengths and extinction 
coefficients. 
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FIGURE 4. Measured variation of the noise level with the signal level for a nearly uniform 

camera illumination. Shown are: (a) the distribution of absolute digital signal 
levels for 8 different/-stop settings of the imaging lens, and (b) the resulting 
relative digital signal level distributions. Notice that the first four distributions 
collapse rather well, indicating that the resulting noise is independent of the 
signal level, typical of a camera noise-limited measurement. The four remaining 
curves at higher signal levels show a relative noise distribution that widens and 
becomes asymmetric with increasing signal level, typical of a shot noise-limited 
measurement. The resulting signal-to-noise ratios are given in figure 5. 
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FIGURE 5. Measured dependence of the signal-to-noise ratios (S/N) obtained from each of 
the distributions in figure 6 on the signal strength (S), showing the characteristic 
(S/N) ~ S1 scaling in the camera noise-limited regime, together with the 
characteristic (S/N) ~ S1/2 scaling in the shot noise-limited regime. The scalar 
field measurements typically span across both noise regimes, with the mean 
signal to noise ratio above 65. 
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FIGURE 6. Experimental convergence test of the true measurement resolution obtained in 
these experiments, showing the fraction of the total scalar dissipation obtained 
from a measurement having a finite number of pixels per strain-limited diffusion 
layer length scale AD. Notice that the experimental results are in excellent 
agreement with the short dashed theoretical result, indicating that the present 
measurements are sufficiently resolved to detect about 80% of the true scalar 
dissipation. Note also that any measurement having spatial resolution coarser 
by an order of magnitude or more than the present study would miss virtually 
all of the true scalar dissipation field. 
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FIGURE 7. Stages in the conversion from the measured fluorescence intensity field to the 
dye concentration field. Shown are: (a) the average fluorescence intensity 
obtained in each column of the array, normalized by the time-and-volume- 
averaged fluorescence intensity; (b) the same result after correction for laser 
beam attenuation. Note the good short-duration statistical agreement in panel 
(b) between the measured mean radial variation in the dye concentration field 
and the classical mean profile over the imaged region in the flow 
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FIGURE 8. The structure of the conserved scalar field £(x,f) in three adjacent spatial data 
planes from a typical (2563) data volume. The small changes between these 
three planes results from the high spatial resolution achieved (see Table 3). 
Also shown is the scalar dissipation field that results from direct differentiation 
of the data in these three suatial Dianes. 
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FIGURE 9. Individual scalar gradient vector component fields (dCjdxi) in the same 
intersection plane shown in figure 8. Note that positive and negative values 
are shown with red and blue colorings, respectively. Compare the linear 
dissipation field with figure 8. 
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FIGURE 10. The spherical orientation angle fields $(x,t) and <p(x,f) for the scalar gradient 
vector field V£(x,f) in the same intersection plane shown in figures 8 and 9. 
Note variations in the scalar gradient orientations occur on the lengthscale A^ 
while the vector magnitude varies on the lengthscale AD- 
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FIGURE 11a. Example of a high-resolution, three-dimensional (2563), spatial data volume 
(see Fig. 2) from the measured conserved scalar field £(x,r) from Case R0703 
in Tables 1,3 and 4. The measurements for each case typically acquire nearly 
200 such three-dimensional spatial data volumes, spaced AT apart in time. 
Note that each edge of the cubic volume is approximately 20 times smaller 
than the local outer scale 5(x), and as indicated by the axes is of the order of 
the local inner scale Ä^,(x) of the underlying turbulent flow field. 
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FIGURE lib. The three-dimensional scalar energy dissipation rate field V£-V£(x,f) obtained 
by direct differentiation of the conserved scalar field measurements £(x,f) in 
the same spatial data volume shown in figure 11a. No smoothing or filtering 
has been applied to the resulting derivatives; the smoothness of the dissipation 
field obtained is a consequence of the high resolution and signal quality attained 
by the measurements. The dissipation field gives the local instantaneous rate 
at which the scalar energy per unit mass of fluid, V^x/), is being irreversibly 
reduced by molecular diffusion in the flow. 
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FIGURE lie. The instantaneous scalar energy dissipation rate field /ogioV£-V£(x,f), shown 
in logarithmic form, for the same data volume shown in Figs. lla,b. In this 
form, it can be readily seen that all the scalar dissipation is confined to thin, 
sheet-like, strained, laminar diffusion layers, which are stretched and folded 
by the underlying turbulent strain rate and voracity fields into a topologically 
complex surface. 
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FIGURE 1 la. An example of a high-resolution, three-dimensional (2563), spatial data volume 
from the measured conserved scalar field t,(x,f) from Case R0806. The axes 
give the orientation of the cubic volume relative to the flow. Note in comparing 
among figures 11 through 13 that no preferred orientation is readily apparent 
in the mixing process at these scales, suggesting near isotropy of the small 
scales of the flow. Slight anisotropies consistent with the orientation of the 
principal axes of the mean strain rate field are, however, revealed by detailed 
numerical analyses of these volumes. 
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FIGURE 12b. The three-dimensional scalar energy dissipation rate field V£-V£(x,f) 
corresponding to the conserved scalar field measurements C,(x,t) in Fig. 12a. 
Note the high degree of internal intermittency evident in these scalar dissipation 
fields, where large values of the dissipation rate are seen only very rarely, and 
most of the data volume contains very low dissipation rates. 
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FIGURE 12C. The instantaneous scalar energy dissipation rate field /ogioV£-V£(x,f) in 
logarithmic form for the same data volume shown in Figs. I2a,b. The high 
internal intermittency is evident here as well. In this form it can be seen that 
this intermittency results from the concentration of scalar gradients in thin, 
sheet-like layers formed by the competing effects of strain and molecular 
diffusion in the flow. The stretching and folding of these sheets by the small 
scale motion in the underlying turbulent flow produces the wide distribution 
of striation thickness evident in these data. 
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FIGURE 15. The probability density function of the conserved scalar t,(x,t) determined 
from measurements in two cases, shown normalized with the local mean scalar 
value. Note that the long tail at large scalar values appears consistent with 
other measurements of the peak normalized scalar values at this radial location 
in the turbulent jet. 
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FIGURE 16. Probability densities of the scalar energy dissipation rate V£-V£(x,f) determined 
for the same two cases as in figure 15. Shown are (a) the probability densities 
of V^-V^(x,0 normalized by inner variables; (b) the probability densities of 
/ogeV^-V^(x,0 normalized by inner variables; (c) a comparison of the 
probability density of /oge^-V^(x,f) with the lognormal distribution. 
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FIGURE 16. (concluded). 
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FIGURE 17. The joint probability densities of the conserved scalar field £(x,r) and the 

scalar energy dissipation rate field V^-V^(x,f) normalized by inner variables 
for the same two cases as in figures 15 and 16. Shown are: (a) case R0703; 
(b) case R0806. 
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FIGURE 18. Conditional statistics of the scalar dissipation rate field normalized by inner 
variables for the same two cases. Shown are: (a) the conditional mean 
dissipation; (b) the conditional variance of the dissipation. 
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FIGURE 19. Probability densities of the individual scalar gradient vector component fields 
3^/3x,(x,r) normalized by inner variables for the same two cases. Shown are: 
(a) case R0703; (b) case R0806. Note that positive x represents the radial 
outward direction, positive y the upstream direction, and z the azimuthal 
direction. 
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FIGURE 20. Joint probability densities of the individual scalar gradient vector component 
fields dt/d\i{x,t) normalized by inner variables. Shown are: (a) the joint pdf 
between the x- and y-derivatives; (b) the joint pdf between the x- and z- 
derivatives; (c) the joint pdf between the y- and z-derivatives. 
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FIGURE 20. (concluded). 
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FIGURE 21. Probability densities of the spherical orientation angles (£, (p) specifying the 
scalar gradient vector orientation. Shown are: (a) the pdf of d, giving the 
angle between the projection of the scalar gradient vector into the x-y plane 
and the x-axis; (b) the pdf of cp, giving the angle between the scalar gradient 
vector and the z-axis. In each case, also shown is the corresponding isotropic 
distribution. 



FIGURE 22. The probability density function of the scalar gradient vector orientation an^le 
cp, showing the distribution before and after the mean flow slewing correction 
together with the corresponding isotropic distribution. 
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FIGURE 23a. One-dimensional spatial scalar energy spectra determined from each of the 
three orthogonal directions in three-dimensional (2563) spatial data volumes 
of the type shown in Figs. 11 through 13, compared with the Batchelor (1959) 
SI % = 5 foI *e high wavenumber spectrum in Sc » 1 scalar mixing 

in turbulent flows. The data are presented in Batchelor-normalized form 
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FIGURE 23b. The one-dimensional spatial scalar energy spectra from Fig 23a shown clotted 
in dissipation form, compared with the Batchelor (1959)'theorv wTh*-5 
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FIGURE 24. Comparison of the present one-dimensional spatial scalar energy spectra 
obtained for Sc = 2075 with the temporal spectra of Clay (1973) for Pr= 0 7 
and Pr = 7.0. The data are presented in Kolmogorov-normalized form 
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FIGURE 25. Comparison of the present temporal scalar energy spectrum from case R0811 
tor Äc = 2075 with the temporal spectra of Clay (1973) for Pr = 0 7 and Pr = 
7.0. Also shown for comparison is a *-i scaling in the viscous-convective 
subrange for Sc » 1 predicted by the Batchelor (1959) theory 



10 

10 

10" 

d! 10 

Ü1 
10 

10 

10 

10 

temporal spectrum 
Batchelor's theory 

10 10 

10 

10 
as 

oa 
r    ^ 

temporal spectrum 
Batchelor's theory 

10" 10" 10 10 

FIGURE 26. Comparison of the present temporal scalar energy spectrum from case R0811 
for Sc = 2075 with the Batchelor (1959) theory using q = 5 for the high 
wavenumber spatial spectrum in Sc » 1 scalar mixing in turbulent flows. 
Shown here are: (a) the scalar energy spectrum; (b) the resulting dissipation 
spectrum. 



FIGURE 27a. The full three-dimensional spatial scalar energy spectrum £;(k) obtained from 
an ensemble average of spectra from 232 individual data subvolumes of the 
type shown in figures 11 through 13. Each of the 64 panels shown is an 
intersection through the three-dimensional k-space for a fixed value of 1%. In 
each panel, (£*, ifey) = (0, 0) is at the lower right comer, with k^ increasing to 
the right, and L increasing toward the top of the page. The top left panel 
corresponds to 4 = 0, with k^ increasing from left to right, and then from top 
to bottom. The colors from blue to red correspond to four decades of 
logarithmically increasing energy values. 
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FIGURE 21b. Four intersections for k,, = constant through the three-dimensional k-space 
showing the three-dimensional spatial scalar energy spectrum E^k) from figure 
27a. In each panel, (k*, ky) = (0,0) is at the lower right comer, with ^ increasing 
to the right, and ky increasing toward the top of the page. The top left panel 
corresponds to k^ = 0, with k^ increasing from left to right, and then from top 
to bottom. The colors from blue to red correspond to four decades of 
logarithmically increasing energy values. 
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FIGURE 28. The one-dimensional spatial scalar energy spectrum obtained by integrating 
the three-dimensional spectrum £;;(k) in figure 27 in ky and kz, compared 
with the original one-dimensional spatial spectrum in fcx from figure 23a. 
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FIGURE 29. The one-dimensional spatial scalar energy spectrum obtained by integrating 
the three-dimensional spectrum Etfk) in figure 27 over spherical shells in k- 
space, compared with the three individual one-dimensional spectra from figure 
23a. 



FIGURE 30.   The wavelet bases g^Kx) and g2(
KX) used t0 analyze scale information in the 

scalar and dissipation fields via the wavelet spectra in figures 31 through 34. 



rl.3 

9 

L -2 

FIGURE 3 la The logarithm of the g: wavelet power spectrum applied to another one- 
dimensional cut through the turbulent conserved scalar field shown above. 
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FIGURE 31b The logarithm of the ^ 'Mexican hat' wavelet power spectrum applied to the 
same one-dimensional cut through the turbulent conserved scalar field shown 
above. 
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FIGURE 32a The logarithm of the gx wavelet power spectrum applied to the one-dimensional 
cut through the scalar dissipation field shown above. The dissipation shown is 
the full three-dimensional scalar energy dissipation corresponding to the 
conserved scalar field of Fig. 31a. 
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FIGURE 32£The logarithm of the g2 wavelet power spectrum applied to the one-dimensional 
cut through the scalar dissipation field shown above. 
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FIGURE 33 The logarithm of the g2 'Mexican hat' wavelet transform averaged over all the 
one-dimensional data records available in one arbitrarily chosen 2563 data volume 
within the turbulent flow. Very little spatial variation remains even after this 
small ensemble average. The plot above it shows the one-dimensional profile 
of the wavelet transform at the center x position, i.e. xfkv = 1.05. 
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FIGURE 34. Distributions of the dissipation layer thicknesses, (A,D)2o%, shown in absolute 
terms and normalized as in Eq. (6) to show the scaling constant, obtained 
from using the wavelet analysis, the correlation analysis, and the integral 
moment method. See also Table 5 and compare with (A) = 11.2 for Sc = 1 
from Buch (1991). 
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FIGURE 35. The measured scalar dissipation rate profiles for several representative one- 
dimensional layer-normal intersections through layer-like dissipation structures 
of the type evident in figures 11 - 13. Shown are the scalar dissipation rates 
as functions of the conserved scalar values. Note the differing scalar endpoints 
{C,+, £-) for the various layers, and how the peak dissipation rate within each 
profile typically scales with the scalar difference (C,+ - £,-). 
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FIGURE 36. The widely differing profiles in figure 35 are shown normalized with their 
scalar endpoints (C,+, t,-) for a = 1.79. Note that when viewed in this form, 
the internal structure for all the layers can be seen to agree well with the result 
given by the solid line for a locally one-dimensional, strained, laminar diffusion 
layer, and take into account the effects of varying scalar endpoints and layer 
thicknesses. The solid line can be used to model ß(£, V£- VQ due to the small 
scales of turbulent mixing if the presumably universal distributions of layer 
thicknesses ß(A.D) and scalar endpoints ß(£+, C,~), normalized by the local 
inner variables, are known. 
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FIGURE 37. Measured marginal distributions of the scalar endpoints, ß(^+) and ß(^~), 
obtained as described in §6.2 for a single three-dimensional (2563) spatial 
data volume. Results obtained show the insensitivity of the algorithm to the 
threshold criterion. Analogous marginal distributions obtained from a large 
number of such data volumes are shown in figure 39, and the corresponding 
joint distributions are shown in figure 38. 
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FIGURE 38. The measured joint probability density function (pdf) of scalar endpoint values 
ß(^+, £-) for all the layer-like dissipation structures from volumes of the type 
shown in figures 11 - 13 and figures 41 and 42. Shown are the results obtained 
for (a) case R0703 and (b) R0806 which can be seen to agree quite well. Note 
that by definition ^+ > £,-, with the dashed lines denoting the limit C,+ = C,~. 
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FIGURE 39. The marginal probability density functions ß(^+) and ß(£~) of scalar endpoint 
values obtained from the joint distributions in figure 38. Note that the 
requirement that ^+ > C,~ leads to a peak in ß(^+) near the local mean scalar 
value. Compare with figure 37 showing the results obtained from a single 
three-dimensional (2563) spatial data volume of the type shown in figure 11 - 
13. 
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FIGURE 40. The joint probability density function ß(£, V^VQ obtained from the model 
in §6.3 for the small scales of turbulent mixing. Contour levels shown are 
logarithmically spaced. The result is obtained via the joint distribution ß(^+, 
C,-) in figure 38, and can be compared with the direct measurement in figure 
17a. 
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FIGURE 41. Examples of two-dimensional intersections of the instantaneous scalar energy 
dissipation rate field and the associated dissipation layer center field of the 
type shown in figure 42. Note that the algorithm appears to successfully find 
the centers of even very weak dissipation layers. 



2.3 

'\ 

0 

0 0. 

2.1 2.6 

FIGURE 42. The dissipation layer center field computed for the same data shown in figure 
11. Compare especially with the dissipation field in figure lie. The layer 
center fields are used to analyze the scalar endpoints and thickness properties 
of the turbulent mixing process. 
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FIGURE 43. Layer center definition fields for a test case that was formulated in terms of a 
conserved scalar field t,(x,t) that varied as sin(x2). The scalar energy dissipation 
field in this case varies as V£-V£(x,0 = 4x2cos(x2) so that the magnitude as 
well as the frequency of the layers vary with the coordinate x. Shown in (a) is 
the clean version of this field resulting from our layer maximum finding 
algorithm and in (b) is the field in (a) made noisy by the addition of intentional 
holes and extraneous layers in a random manner. Both were subjected to a 
comparison measurement of their individual layer separation distance 
distribution functions which can be seen in figure 44. 
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FIGURE 44. The distributions of scalar dissipation layer separations for the test fields in 
figure 43, compared with the exact analytical result. Note that both the "clean" 
field in figure 43a and the "noisy" field in figure 436 produce results that 
agree with each other except at the very smallest separations. Moreover, both 
cases agree well with the "exact" result, with the differences discernible be- 
ing due to the inherently discrete (256 x 256) nature of the "clean" and "noisy" 
fields. 
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FIGURE 45. The distribution of scalar dissipation layer separation distances obtained by 
ensemble averaging the results for turbulent flow data of the type shown in 
figures 11-13. Note the -3 power-law scaling in the distribution over nearly 
the entire range of separation scales. 
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FIGURE 46. The distribution of scalar dissipation layer separation distances obtained by 
ensemble averaging the results for turbulent flow data in individual three- 
dimensional spatial data volumes. 
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3.    The Strained Dissipation and Reaction Layer Formulation 

1. Introduction 

Results from detailed conserved scalar imaging measurements in 
nonreacting turbulent flows such as those in §2 of this Report, and [1-31 as well as 
direct numerical simulations (DNS) of passive scalar mixing in turbulent flows [4- 
7], have shown that whereas the underlying hydrodynamics of turbulent flows 
are quite complex, the structure of scalar mixing in such flows is considerably 
simpler. In particular, while the instantaneous kinetic energy dissipation rate 
field is a complex arrangement of line-like, sheet-like, and intermediate 
structures, for dynamically passive conserved scalar fields ^(x,t) with Schmidt 
numbers (v/D^ of unity or larger, essentially all of the instantaneous scalar energy 
dissipation rate field x(x>0 - (ReSc)~xV^ -V£(x,f) is organized into locally one- 
dimensional layer-like dissipation sheets. Examples of these dissipation layers 
can be seen in Fig. 1, from Buch & Dahm [31. The dynamics of the strain- 
diffusion competition involved in scalar mixing, which leads to the inexorable 
formation of such layer-like scalar dissipation structures and to the exclusion of 
the complementary line-like dissipative structures found in the underlying 
vorticity field, are discussed in detail in Ref. [31. These layer-like scalar dissipation 
sheets are simply the three-dimensional analog of the localized dissipation 
"shocks" that arise naturally from the advection-diffusion balance in high 
Reynolds number solutions to the diffusive Burgers' equation. 

In reacting turbulent flows, the advection-diffusion balance that leads to 
the formation of these ubiquitous scalar dissipation layers is present as well. In 
the presence of combustion heat release, the individual chemical species 
diffusivities D, vary with local temperature, however the hydrodynamic viscosity 
v scales in essentially the same way and thus Sc remains essentially constant near 
unity. This leads to a change in the lengthscale characterizing the thickness of 
these layer-like dissipation structures, but does not alter the basic strain- 
diffusion competition that establishes these structures. Additionally, the 
underlying stain rate and vorticity fields are modified by the fluid expansion due 
to combustion heat release, and the baroclinic vorticity due to the interaction of 
density gradients with the hydrostatic pressure gradient (buoyancy) and with 
local hydrodynamic pressure gradients. However for heat release values typical 
of hydrocarbon combustion, the local velocity gradients leading to formation 
and preservation of these dissipation sheets remain dominant in turbulent flows 
with combustion as well. Recent results from scalar imaging measurements by 
Long [8] as well as DNS computations appear to confirm that these layer-like 
scalar dissipation structures remain present even in turbulent flows undergoing 
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highly exothermic combustion reactions. 

The implications of this fundamentally layer-like structure of scalar mixing 
in turbulent hows are substantial, especially for turbulent combustion. As noted 
above, these dissipation layers result entirely for hydrodynamical reasons. Thus 
all conserved scalar quantities with Sc > 1 must have their scalar energy 
dissipation concentrated in such locally one-dimensional layer-like structures. 
This will be true irrespective of whether the scalar is a passive physical quantity 
(such as an inert dye or gaseous tracer), or a more abstract quantity formed from 
the concentrations of various chemical species evolving in the flow (such as any 
of various mixture fraction variables). Thus the dissipation fields associated with 
all conserved scalar mixture fractions must also remain manifestly layer-like, and 
since this is a consequence solely of the hydrodynamics of scalar mixing, this 
must remain true irrespective of the degree of chemical nonequilibrium to 
which the various constituent chemical species fields are subjected - the 
presence of locally one-dimensional dissipation layers in mixture fraction fields 
is entirely independent of the chemical state in the flow. As a consequence, any 
model relating the combustion chemistry in a turbulent flow to the underlying 
fluid dynamics must, at a minimum, recover this layer-like dissipation structure 
once the resulting reactive species concentrations are formed into mixture 
fraction variables. Conversely, the inherently layer-like structure of the 
dissipation rate fields associated with mixture fraction variables in turbulent 
Hows provides a rigorous starting point for models of nonequilibrium chemistry 
in turbulent flows. 

2.   The Strained Dissipation and Reaction Layer Formulation 

The ubiquitous scalar energy dissipation layers noted above allow for a 
physically-based formulation that relates the mixing state of one or more 
conserved scalars by the underlying turbulent flow to the chemical state of 
nonequilibrium combustion occurring within the flow. This approach begins 
by noting that any conserved scalar mixture fraction variable C,t can be written as 
a linear sum over the chemical species fields Y:(x,t) as 

N 

^t(x,t) = YjaIJYj(x,t)        i = l,2,...,m (1) 

where N is the number of chemical species and m the number of elements 
involved in the chemical system. Each of the m conserved scalars ^ must satisfy 
the conservative advection-diffusion equation 

a/ + u.v;--v.(p^vg = o. (2) 
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Owing to the locally one-dimensional state of the scalar field within any given 
dissipation layer, as discussed in §1 (see Fig. 1), derivatives of £,- along the local 
layer-normal coordinate n far exceed those along the layer. Thus (2) above 
reduces to the locally parabolized form 

~^-v(n,t)^- — 
dt on     p an 

PA K 
^a o (3) 

n ) 

where v(n,t) is the local velocity component along the layer-normal direction n. 
In a Howarth-transformed normal coordinate n, the layer-normal velocity 
becomes -e(t) ■ n, where e(t) is the locally uniform strain rate. Moreover, if the 
Chapman gas approximation is made, then (3) becomes the classical advection- 
diffusion equation for a constant diffusivity D. 

As is evident in Fig. 1, in general the scalar dissipation layers in turbulent 
flows do not involve pure fuel or pure air on either side of the layer. Instead the 
correct local boundary conditions for (3) can be expressed as 

£, -> £f    as   n -» ±oo (4) 

where the appropriate £,+ typically vary slowly along the layer. Practical 
implementation of these boundary conditions will be dealt with below. We will 
first examine the implications of this local one-dimensionality in the scalar field 
for the chemical species fields Yj(x,t). 

Replacing £,- in (3) with its definition in terms of the various chemical 
species concentration fields in (1), and recalling that the au are constants, gives 

f"       "       ■■■    "    ^( h\Yx{x,t)\\    (ti\ a l.i 

•*2,I 

a •1.2 a 

\a»,A 

■\.N 

*2,N 

lm,N ) 

L[Y2(x,t)] 

L[YN(x,t)\ 

0 

vOy 

(5) 

when 

L[Yj(x,t)] = 
dYJ dYj     Id   r 

at on     pan  y 

dYj 
w J/P (6) 

Here we have also introduced the requirement that, since the £,■ are conserved, 
the weighted chemical species reaction rate terms Wj(x,t) must sum to zero as 

JTa.>,(x,r) = 0, (7) 
y"=i 

We now want to consider the implications of (5) - (7) for the structure of 
the Y(\,t) fields.   Briefly, we will argue that these constraints together require 
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that the only physically realizable solution is the trivial case L[Y(x,t)] = 0, in 
which case the species conservation equations satisfy locally one-dimensional 
advection-cliffusion-reaction equations within each dissipation layer. In effect, 
we are arguing from precisely the opposite point of view from that usually taken 
in deriving the classical "flamelet" model. In deriving the flamelet model, 
conditions are assumed for which the flamelet is thin, and the species transport 
equations then formally reduce to locally one-dimensional equations which, in 
turn, dictate a locally one-dimensional structure in the mixture fraction fields 
C/(x,0- However, the conditions under which the requisite thin flamelet 
assumption actually holds are so restrictive as to render the resulting classical 
flamelet model useful only for small equilibrium departures. Here, we take 
exactly the opposite point of view. We begin with the physical observation 
from §1 that the mixture fraction fields ^,{x,f) in turbulent flows must be locally 
one-dimensional, and argue that this requires the constituent chemical species 
fields Fy(x,r) to also be locally one-dimensional. (It will be seen below that, 
unlike the flamelet model, the resulting one-dimensionality in this case does not 
demand thin "flamelet-like" Yj(x,t) fields.) That argument for one-dimensionality 
in the Yj(x,t) fields is complete if L[Yj(x,t)] = 0 is the only physically realizable 
solution to (5) - (7). There are three key physical requirements that we argue 
demand this trivial solution in (5). 

(i) Note that all the a{ > 0 in (5), since from (1) each mixture fraction £(- is 
simply a sum over all the chemical species Y- of their contributions to the 
tally of each element /. Thus, owing to the fact that all the ajj

,s have the 
same sign, the zero sums in (5) can only result from either the trivial 
solution L[Yj(x,t)] = 0, or else from a fortuitous cancellation of positive and 
negative L[K;(x,/)]'s. If the latter is the case, then this cancellation would 
need to be preserved for each of the m sums corresponding to the 
elements / = 1, 2,..., m for the single set of species fields ^(x.O- 

(ii) Since typically N » m, there are combinations of the L[Yj(x,t)]'s that will 
produce these m zero sums in (i) above, however each of these 
combinations imposes specific relations between the various Yj(x,t) fields. 
The restricted Yj(x,t) fields necessary to preserve these m zero sums would, 
at the same time, need to be consistent with the kinetics associated with 
the resulting reaction rate terms. In other words, each of the combinations 
of the y.(x,0 fields that satisfies the required cancellation of L[Yj(x,t)]'s 
corresponds to a set of net elementary reaction rates w.(x,0- However the 
resulting n>.(x,f) fields must at the same time preserve the zero sum in (7). 
This would, at a minimum, greatly reduce the set of L[Yj(x,t)]'s 
simultaneously consistent with both (5) and (7). 
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(Hi) Lastly, the zero sums in (5) and (7) must be preserved for all possible 
chemical systems, not merely any particular reaction set under 
consideration. No features of the reaction kinetics specific to any one 
chemical system can be invoked to satisfy the relations among the Yj(x,t) 
fields necessary to achieve cancellation of positive and negative L[Yj(x,t)]'s 
in (5), while at the same time preserving the additional zero sum in (7) for 
the resulting elementary reaction rates. In other words, the layer-like 
structure in the scalar dissipation field as expressed by (5) - (7) must be 
recovered for every conceivable elementary chemical system that could 
hypothetically occur. 

Each one of these three observations places strong constraints on the Yj(x,t) 
fields. The fact that all three of these requirements must be simultaneously met 
by the coupled F/x,r) fields suggests a set of constraints collectively so 
restrictive as to be physically unrealizable. We therefore hypothesize that the 
set of simultaneous conditions under which (5) can have a non-trivial solution are 
mutually exclusive, and that the only physically realizable solution is the trivial 
case L|Y;(x,f)] = 0 for each), namely 

dYj      t      dYj     Id   f  -   5iO 

at on     p an 

In other words, the one-dimensionality of the local conserved scalar field across 
each of these strained dissipation layers implies a locally one-dimensional 
stmcture for the underlying chemical species fields within the layer. However, 
owing to the local boundary conditions on (8), this does not imply that the 
resulting K/x,f) fields must be layer-like, as will be seen from the results in §4. 

As noted in (4), these locally one-dimensional strained dissipation and 
reaction layers are in general not between pure fuel and air. Instead, the 
appropriate local boundary conditions on (8) are 

Yj-^Yf    as    /i-»±*>. (9) 

Solutions Yj(n,t;E, Yf, Y~) to (8) are thus parametrized by the strain rate e(r) and 
the boundary values Y± In practice, specification of the appropriate local 
boundary conditions for these one-dimensional advection-diffusion-reaction 
equations within any given dissipation layer is a non-trivial matter. For the 
moment, it should be noted that the (n,e) dependence in (8) can of course be 
equivalently replaced with ((,,%) from the corresponding conserved scalar 
solution in (3) to yield the classical "flamelet" equations, though the physical 
assumptions leading to these two equations are quite different, as are the 
boundary conditions. Specification of the correct local boundary conditions for 
the flamelet equation is equally difficult, though usually pure fuel and air 
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conditions corresponding to C* = (0,1) are specified. 

Putting the discussion of boundary conditions aside for the moment, it is 
appropriate first to comment on the similarities and differences between the 
present strained dissipation and reaction layer (SDRL) model, and the classical 
flamelet model, since both arrive at the same governing equations. The SDRL 
formulation above is a consequence of the one-dimensionality of any conserved 
scalar variable across the locally layer-like structures seen to dominate scalar 
energy dissipation rate fields in turbulent flows. The formulation, in this sense, 
is based entirely on hydrodynamical arguments, and makes no statements about 
thinness of reaction zones, or places any other requirements on the reaction 
chemistry. The flamelet model [9,10], on the other hand, is derived explicitly on 
the basis of a presumed one-dimensionality in the chemical species fields under 
conditions for which the flamelet is "thin" relative to the dissipation scales. This 
thinness requirement is expressed in various flamelet implementations either as 
a requirement that variations in the scalar dissipation within the reaction zone 
must be negligible, or else that these variations can be modeled via some 
presumed function such as % ~ "Q> or the self-similar solution of the scalar 
transport equation (3) for free stream boundary conditions. 

The latter class of flamelet models is most closely related to the present 
approach, though the thinness requirement to which these are subject is not a 
constraint here. Moreover the appropriate local boundary conditions in (9) for 
the one-dimensional advection-diffusion-reaction equations within any given 
dissipation layer differ fundamentally from classical flamelet models. Instead, 
these correspond to the mass fraction values Yp between neighboring 
dissipation layers. In practice, the information required to specify the correct 
Yp will rarely be available. However, the physical nature of the approach 
developed here allows some insight into how these boundary conditions can be 
simplified. In particular, we note that the mapping from (£,%) to the strain rate e 
in the local Howarth-transformed coordinate 

£ = 2KD exp 2<erf 

K+-G") 
(10) 

is very sensitive to the conserved scalar boundary values ^+ and C,~ in (4). Since 
the strain rate drives the local molecular mixing rate and thus plays a dominant 
role in setting the depth of nonequilibrium chemistry, it is of primary 
importance to account for the scalar boundary values properly. In comparison 
with ^+ and ^~, the corresponding precise chemical species boundary values Yf 
and  Y~ would appear to have less of an effect on the nonequilibrium levels 
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within the layer, since these influence the reaction progress only indirectly. The 
local departures from chemical equilibrium in each of the species 
concentrations will therefore be determined principally by the local scalar value 
^ and the correct local strain rate e(£; C,+, £-), and less by the precise chemical 
species boundary values. We therefore assume that for a given layer the local y. 
may be determined relatively accurately by assigning the species boundary 
values to Yf = YfC^, £*) from the solution for with pure fuel and air boundaries. 
The local chemical species concentrations are then determined by a mapping, 
via the quasi-steady solution from the local scalar value C, and the correct local 
strain rate e(^; £,+, V^- V^) to the species mass fraction Yr 

3.   Qualitative Comparisons with OH PLIF Imaging Data in Turbulent Jet Flames 

We have applied this strained dissipation and reaction layer formulation 
to examine variations in the structure of chemical species concentration and 
reaction rate fields for increasing degrees of chemical nonequilibrium in a 
turbulent jet diffusion flame. The results are obtained by applying the strained 
dissipation and reaction layer formulation in §3 to imaging measurements of 
conserved scalar fields obtained in the corresponding nonreacting flow. The 
experimental technique has been described in detail elsewhere [3,11,12]. Briefly, 
these conserved scalar imaging measurements were made in the self-similar far 
field of an axisymmetric coflowing turbulent jet in the Turbulent Diffusion Flame 
(TDF) wind tunnel at the Combustion Research Facility of Sandia National 
Laboratories. The flow was established in the 30 cm x 30 cm x 200 cm test 
section of the forced draft vertical tunnel with free stream velocity UM by 
issuing a jet of undiluted technical grade propane with momentum flux J0 

through a 7.7 mm diameter nozzle. The beam from a 300 mj/pulse Nd:YAG 
laser was doubled to 532 nm and formed into a thin sheet passing through the 
flow. The lie laser sheet thickness was measured as 230 |im. Rayleigh scattered 
light from this sheet was imaged onto a 14-bit, slow-scanned, cooled, 
nonintensified imaging array. The array was sampled in a 256 x 512 x 8-bit 
format, with each element measuring 23 (im x 23 Jim. The imaging optics were 
arranged to give a 1:1 image ratio, with the array output giving the Rayleigh signal 
integrated over the 10 ns laser pulse duration. The measurement location was 
centered 39 nozzle diameters downstream of the jet exit at a local outer-scale 
Reynolds number Re ~ 14,000. The spatial and temporal resolution achieved 
were sufficient to distinguish the smallest spatial and temporal scales in the scalar 
field. Reference measurements with pure air in the test section gave the laser 
sheet intensity distribution and allowed the effects of non-uniformities in the 
laser sheet to be largely removed from the data. The Rayleigh signal at each 
point was then converted to the instantaneous value of the propane mass 
fraction, yielding a generic Sc ~ 1 conserved scalar field t,(x,t) in the turbulent 
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flow. The structure of the scalar energy dissipation rate field V£-V£(x,f) was 
obtained from the measured z(x,t) data using linear central differences on a 3 x 3 
template centered on each data point. 

Figure la shows a typical 256 x 512 data plane of the instantaneous 
conserved scalar field t,(x,t). The 256 different colors denote ranges of 
conserved scalar values as indicated, with pure blue beginning at C,(x,t) = 0, 
corresponding to pure air, and increasing uniformly to pure red denoting the 
highest conserved scalar values in the data. The jet centerline runs down the 
right edge of the plane, and the axes indicate the spatial extent in terms of the 
local strain-limited scalar gradient lengthscale XD. Derivatives of the measured 
conserved scalar field give the projection of the true three-dimensional scalar 
gradient vector V£(x,f) into the plane. Figure lb shows the logarithm of the 
corresponding scalar dissipation rate field formed from this projection, 
/ogeV^-V^(x,r). The 256 different colors denote the local scalar dissipation rate, 
with black beginning at V^-V^ = 0, and pure blue through pure red denoting 
logarithmically increasing dissipation rates. 

The local outer variables w(x) and 5(x), and the mass fraction-based 
conserved scalar field C,(x,t), in the far field of axisymmetric turbulent jets follow 
self-similar scalings with downstream location x. Since these scalings produce a 
Reynolds number that remains constant with increasing downstream distance, 
measurements such as those in Fig. 1 can be rescaled to map the instantaneous 
scalar and dissipation rate fields to any x-location in the self-similar far field of 
the flow. A given set of chemical reactions occurring in this conserved scalar 
field would then correspond to a turbulent jet diffusion flame of length L, where 
the flame tip is taken to occur at the x-location for which the maximum 
conserved scalar value achieves stoichiometry for the fuel and oxidizer 
combination being considered. The mass fraction and reaction rate fields for 
any chemical species in this flame can then be constructed from the local values 
of the scalar and dissipation rate fields using the steady strained dissipation and 
reaction layer formulation. 

Results are presented for the OH mass fraction and reaction rate fields at 
various downstream locations for three jet flames corresponding to increasing 
degrees of chemical nonequilibrium. The conditions for each case considered 
are shown in Fig. 2, where the depth of nonequilibrium is indicated relative to 
the flame blowout limit for an unpiloted hydrogen-air turbulent jet diffusion 
flame. The three cases each have the same far field Reynolds number (Re = 
14,000), but correspond to conditions in the flame ranging from near 
equilibrium (Case 1) to moderate nonequilibrium (Case 2) to deep 
nonequilibrium (Case 3).   With a characteristic temperature of roughly 1800 K, 
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and with v ~ T1-5, a cold-flow Reynolds number of 210,000 in Fig. 2 produces a 
hot-flow conserved scalar field consistent with the Re = 14,000 measurements in 
Fig. 1. All results presented below are constructed via the SDRL formulation 
outlined in §2 using the conserved scalar and scalar dissipation fields in Fig. 1, 
with a uniform rescaling of these C, and % fields mapping them to any x/L 
location for any of the three cases considered. Relative local strain rates for each 
of the three cases and each of the four downstream locations at which results are 
presented are given in Table 1. 

In Fig. 3 we compare the resulting OH mass fraction fields Y0H(\,t) at x/L 
= 0.25 for each of the three cases. (Color bars identifying quantitative values for 
each case are given in Figs. 5-7.) Notice that at this location in the flame, the 
SDRL formulation produces thin layer-like OH fields for the near-equilibrium 
conditions in Case 1. The OH layer at these conditions is relatively straight and 
aligned with the downstream direction, and lies well off the jet centerline. 
Overall, the resulting OH field for Case 1 is strikingly similar to OH PLIF 
measurements at small x/L locations in turbulent jet diffusion flames under 
conditions of relatively weak nonequilibrium [13, 14]. By comparison, in Case 2 
the strain rates at this location are significantly higher (see Table 1), and the SDRL 
formulation produces considerably broader and more diffuse structures in the 
OH mass fraction field, with little remaining evidence of the thin layer-like OH 
zones seen for Case 1. This is also consistent with direct OH PLIF imaging 
measurements in turbulent jet diffusion flames. For Case 3, the strain rates at 
this x/L = 0.25 location are so high that local extinction of the reactions occurs 
throughout much of the flow, as evidenced by the zero OH values coincident 
with the high dissipation rates in Fig. 1. The remaining OH zones evident in Case 
3 are completely broad and distributed, and show no remaining evidence of the 
layer-like structure in the underlying scalar dissipation rate field. 

x/L Case 1 Case 2 Case 3 

0.25 10(10-5) 1 10 

0.50 2.5 (10-5) 0.25 2.5 

0.75 1.1 (10-5) 0.11 1.1 

1.00 0.6 (lO-5) 0.06 0.6 

Table 1. Relative strain rates at each of the four c ownstrean 
and each of the three cases identified in Fig.  2 for which 
results are shown. 
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Moving to a location further downstream in the flame, Fig. 4 shows the 
OH mass fraction fields that result from the SDRL formulation at x/L = 0.50 for 
each of the same three flows. A similar transition from thin, layer-like OH mass 
fraction fields at conditions near chemical equilibrium to broad, distributed OH 
zones with increasing depth of nonequilibrium, can be seen in the results 
obtained. There again is a striking resemblance of the OH fields that result for 
each of these three cases with the basic features of OH PLIF images obtained 
from direct measurements in turbulent jet diffusion flames under conditions of 
increasing chemical nonequilibrium [13, 14]. Notice that the thin layer-like OH 
field that results near equilibrium in Case 1 becomes more diffuse with 
increasing chemical nonequilibrium, leading to a broad and distributed OH 
reaction rate field for Case 3. It is essential to keep in mind that all of these fields 
were constructed from the single conserved scalar and scalar dissipation rate 
plane in Fig. 1 via the SDRL formulation. The differences evident among the 
three cases result entirely from the uniform rescaling of the scalar dissipation 
fields for the three flow conditions. Evidently the SDRL formulation allows the 
transition from thin "flamelet-like" fields near chemical equilibrium to broad 
"distributed" fields for large equilibrium departures with no need to explicitly 
distinguish between these two combustion environments, and without any need 
for separate models for treating them. 

Figures 5-7 compare the OH mass fraction fields obtained from the SDRL 
formulation throughout the entire length of the flame for each of the three cases 
in Fig. 2. In each case the fields are shown at four different downstream 
locations relative to the mean flame length L, centered at x/L = 0.25, 0.50, 0.75 
and 1.0. The size of each panel has been correctly scaled and placed for its 
downstream location to give a proper indication of the structure of the flame. 
Differences evident in the OH concentration fields when comparing panels at 
the same downstream location for the three cases shown are due solely to the 
differing degrees of nonequilibrium. However, changes in the OH mass fraction 
fields among panels corresponding to differing x/L values for the same case 
reflect changes in both the depth of nonequilibrium as well as changes in the 
scalar and dissipation rate values with increasing downstream location in the 
flame. For the jet similarity scalings, the scalar field values decrease with 
increasing distance from the jet source as C, ~ x"1. Coupled with the linear 
increase in all length scales in the jet with increasing x, the resulting scalar 
dissipation field values decrease with distance from the jet source like V^ -V^ ~ 
x"4. Thus, in examining these results, it must be kept in mind that comparisons 
made among different cases but at the same x/L location show the effects of the 
degree of nonequilibrium only, while comparisons made at different 
downstream locations within the same case demonstrate the effects of both 
nonequilibrium level and changes in the scalar field values.   Arranging the results 
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as shown in Figs. 5-7 allows separating the changes resulting solely from the 
degree of nonequilibrium from those resulting from changes in the conserved 
scalar and dissipation rate values. Table 1 gives the relative strain rates in each 
panel. 

Note that the features of the resulting OH fields in Figs. 7-9 look very 
similar to those in direct OH PLIF imaging measurements in turbulent jet flames 
under varying degrees of chemical nonequilibrium [13, 14]. This is all the more 
striking in view of the fact that, despite the wide variations in the OH 
concentration field structure seen in these results with changing downstream 
position and with increasing depth of nonequilibrium among the three cases 
considered, all of these fields ultimately resulted from the same conserved scalar 
data plane shown in Fig. 1. Thus thin "flamelet-like" OH mass fractions and 
reaction rates at small x/L in Case 1, and the broad "distributed" regions of high 
OH concentrations and reaction rates in Case 3, all resulted from a simple layer- 
like structure in the scalar dissipation rate field in Fig. lb and all can be 
reconciled with the single physically-based formulation given in §2 for these 
strained dissipation and reaction layers. 

4.   Validation Study using Direct Numerical Simulations (DNS) 

A more detailed validation study was done using DNS data from 
chemically reacting turbulent flow simulations. To do this, we apply the SDRL 
formulation, the equilibrium assumption, and the laminar flamelet model to 
conserved scalar fields resulting from direct numerical simulations (DNS) by the 
U. Washington group of Kosäly & Riley [15] of homogeneous, decaying 
turbulence with chemistry governed by a single step, second-order, irreversible, 
isothermal reaction. This allows a direct examination of the ability of the SDRL 
formulation to predict the fuel, oxidizer, and product concentration fields, and 
evaluation of the relative accuracy of the SDRL formulation as compared to more 
traditional means of predicting chemical properties within the turbulent 
reacting flow for a wide range of Damköhler numbers. 

4.1   Direct Numerical Simulations 

The direct numerical simulations of Mell, Nilsen, Kosäly, and Riley [15] 
refer to a one-step, second-order, irreversible reaction without heat release in 
homogeneous, decaying turbulence.   The equations for the conservation of mass 

V u = 0 (1) 
and momentum 
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—- + «'VH-VV2« = —V/7 (2) 
at p 

govern the evolution of the velocity field. The global chemical reaction may be 
written in the form 

F+<pO ->(0 + l)P (3) 

where (j), the stoichiometric coefficient, is the mass of oxidant that is consumed 
by reaction with a unit mass of fuel. The fuel, oxidizer, and product diffusivities 
are all equal, and the Schmidt number Sc = v/D is unity. The equations for the 
species mass fractions may then be written as 

—L + u-VY: -DV2y.=co, (4) 
at J       J 

Vj 

ZYFY0 J = F 

-$ZYFY0 j=0 

(<P + 1)ZYFY0 j=P 

where Z is the reaction rate constant. An appropriately defined conserved 
scalar variable t, given by 

0 YF ~ Yn + 1 
^ = —L °— (5) 

<p + l 

satisfies the conservative advection-diffusion equation 

^ + M-V£-DV2£ = 0 (6) 
at 

with C, = 0 and (, = 1 corresponding to pure oxidizer and pure fuel conditions, 
respectively. The numerical domain for which the governing equations are 
solved consisted of either 643 or 1283 grid points with periodic boundary 
conditions on all sides of the computational cube. The numerical simulations 
thus provide fully three-dimensional species concentration fields Y(x,t) within 
the reacting turbulent flow field as well as conserved scalar fields C,(x,t) 
sufficiently resolved so that the scalar energy dissipation fields V^ -V^(x,?) may 
be extracted. Representative conserved scalar and scalar energy dissipation 
planes are shown in Figure 8. Notice the predominance of one-dimensional, 
layer-like dissipation structures. Simulations were chosen so that the conserved 
scalar fields had become sufficiently developed. Images corresponding to the 
earliest time are shown at the far left with time increasing from left to right. 
Fields were generated for differing degrees of chemical nonequilibrium 
characterized by the global Damköhler number Da = Z(L/w), where L is the 
velocity integral length scale and u is the rms velocity.    Cases were chosen to 
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emulate conditions ranging from nearly equilibrium to clearly nonequilibrium in 
the mean sense. 

4.2  Equilibrium Approximation 

For a single step, second-order, irreversible chemical reaction of the type 
shown in (3), the limit of infinite Damköhler number (equilibrium chemistry) 
requires that fuel and oxidizer not coexist at any location [16]. This limit leads to 
piece-wise linear relations for the fuel, oxidizer, and product mass fractions in 
terms of the mixture fraction field £(x,f) only.  These expressions are given by 

The parameter ^T = 1/(0+1) is the stoichiometric conserved scalar value. 

4.3  Flamelet Approximation 

Unlike the equilibrium approximation which requires infinite Damköhler 
number, the flamelet model [9, 10] allows for large but finite local Damköhler 
numbers. The reaction zone is assumed to be asymptotically thin such that its 
structure may be considered one-dimensional with the reactants mixing within a 
laminar flow field. The governing equations for the species mass fractions are 
given by 

-X d2 Yi 7=co,       j = F,0 (8) 
2    d£ 

with pure fuel and pure oxidizer boundary conditions 

-ft \:°,; -ft # • 
The introduction of the instantaneous scalar dissipation rate % = 2DVL, -V^(x,r) 
allows for molecular mixing effects to be considered. As is customary in 
flamelet analyses the local dissipation rate is found from the self-similar solution 
of the conserved scalar transport equation for a counter flow configuration with 
local strain rate e and scalar boundaries C* = 0,1 and is given by 
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For the global chemical reaction given by (3) with reaction rates given in 
(4), the fuel, oxidizer, and product mass fractions may be determined in terms 
of the local Damköhler number Da* = 2Z/e, as Y} = Yfi, Da*). The product mass 
fraction solution YpfZ,, Da*), found from (8) with pure fuel and air boundary 
conditions, is shown in Figure 9- For this simple global chemical reaction 
knowing YP(^, Da*) is sufficient for determining Yptf,, Da*) and Y0(t„ Da*). 

4.4 Results 

The three-dimensional conserved scalar C,(x,t) and corresponding scalar 
energy dissipation fields V^ -V£(x,0 generated as part of the reacting flow 
simulation provide the basis for prediction of species concentrations within the 
computational domain for each of the three models examined here. 
Comparisons were made for global Damköhler numbers ranging from near 
equilibrium (Da = 22) to deep nonequilibrium (Da = 0.5). The DNS data provide 
the ability to make direct comparisons of chemical species concentrations with 
those predicted by the flame sheet approximation (EQLM), the laminar flamelet 
model (FLMT), and the strained dissipation and reaction layer (SDRL) 
formulation. 

Figure 10 gives product mass fraction fields, YP(x,t), for the DNS 
simulation as well as the equilibrium, flamelet, and SDRL models for conditions 
of near equilibrium chemistry (Da = 22). The corresponding £(x,f) and 
V^ -V^(x,f) planes are shown at the far left of Figure 8. Figure 11 gives product 
mass fraction fields for the DNS simulation and these same three models 
corresponding to conditions of moderate nonequilibrium chemistry (Da = 4). 
The corresponding C,(x,t) and V^ -V^(x,0 fields are given by the middle planes 
shown in Figure 8. Product mass fraction field results for deep nonequilibrium 
chemistry (Da = 0.5) are shown in Figure 12, and the t>(x,t) and V^ -V£(x,0 fields 
corresponding to this case are shown at the far right of Figure 8. 

Figure 13 shows a graph of mean product concentration error <YP>error, 
for the three models examined versus global Damköhler number where the 
percent error is defined as 

<Yn> 
<Yp>-<Yp        > 

F FDNS 

P   error <YP        > 
FDNS 

100% 

Each model predicts mean product concentrations quite accurately for large 
Damköhler numbers, ie for conditions near chemical equilibrium. The EQLM 
model errors diverge rather quickly as deeper nonequilibrium conditions are 
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approached (Da —> 0) and are the worst of the three models over the entire 
range of global Damköhler numbers examined. The FLMT model shows 
consistent improvement over the EQLM model for all Damköhler numbers but 
shares the EQLM model's fate of rapidly decreasing accuracy for increasing 
degrees of chemical nonequilibrium. The SDRL formulation results are slightly 
less accurate than those of the EQLM and FLMT models for large Damköhler 
numbers, but unlike the EQLM and FLMT models the SDRL formulation 
demonstrates only a small reduction in accuracy for increasingly large 
equilibrium departures. This results in substantial improvements in the 
prediction of mean product concentrations by the SDRL formulation for those 
cases involving the greatest degrees of chemical nonequilibrium. 

Such DNS validation studies permit direct comparisons of chemical 
species concentration fields with those predicted by these models for 
Damköhler numbers corresponding to chemical states ranging from near 
equilibrium to deep nonequilibrium. Results have shown not only the 
applicability of the SDRL formulation but also the accuracy with which it 
predicts species concentrations and their structure in turbulent reacting flows. 
Substantial improvements by the SDRL formulation are seen in the prediction of 
mean product concentrations for those cases involving the greatest degrees of 
chemical nonequilibrium. 

References 

[1] Dahm, W. J. A. & Buch, K. A. (1991) High resolution, three-dimensional 
(2563), spatio-temporal measurements of the conserved scalar field in turbulent 
shear flows; Turbulent Shear Flows 7, pp. 17-26, W.C. Reynolds, Ed., Springer 
Verlag, Berlin. 

[2] Dahm, W. J. A., Southerland, K. B. & Buch, K. A. (1991) Direct, high 
resolution, four-dimensional measurements of the fine scale structure of Sc » 1 
molecular mixing in turbulent flows; Phys. Fluids A3, 1115-1127. 

[3] Buch, K. A. & Dahm, W. J. A. (1992) Fine scale structure of conserved scalar 
mixing in turbulent shear flows: Sc » 1, Sc = 1 and implications for reacting flows; 
University of Michigan Report No. 026779-5, The University of Michigan, Ann 
Arbor, MI. 

[4] Kerr, R. M. (1985) Higher-order derivative correlations and the alignment of 
small scale structures in isotropic numerical turbulence; J. Fluid Mech. 153, 31- 
58. 

[5] Reutsch, G. R. & Maxey, M. R. (1991) Small-scale features of vorticity and 
passive scalar fields in homogeneous isotropic turbulence; Phys. Fluids A 3, 

133 



AFOSR - 89 - 0541 Final Technical Report 
The University of Michigan 

1587-1597. 

[6] Mell, W. E., Kosäly, G. & Riley, J. J. (1993) An investigation of closure models 
for nonpremixed turbulent reacting flows; AIAA Paper No. 93-0104. AIAA, 
Washington, D.C. 

[7] Montgomery, C. J., Kosäly, G. & Riley, J. J. (1993) Direct numerical simulation 
of turbulent H2-02 combustion using reduced chemistry; AIAA Paper No. 93- 
0248. AIAA, Washington, D.C. 

[8] Long, M. B. (1993) Proceedings of the 1993 AFOSR Contractors Meeting in 
Propulsion, AFOSR, Washington, D.C; also private communication. 

[9] Peters, N. (1984) Laminar diffusion flamelet models in nonpremixed turbulent 
combustion. Prog. Energy Combust. Sei. 10, 319-339. 

[10] Peters, N. (1986) Laminar flamelet concepts in turbulent combustion. Proc. 21st 
Symp. (Intl) on Combustion. 1231-1250. The Combustion Institute, Pittsburgh 

[11] Bish, E. S., & Dahm, W. J. A. (1994) Nonequilibrium structure of H2-air 
combustion in turbulent jets; AIAA Paper No. 94-0100, AIAA, Washington, DC. 

[12] Bish, E. S. & Dahm, W. J. A. (1994) Strained dissipation and reaction layer 
analyses of nonequilibrium chemistry in turbulent reacting flows; Proc. 25th 
Symp. (Int'l) on Combustion, Irvine, CA. 

[13] Seitzman, J., Paul, P. H., Hanson, R. K. & Ungut, A. (1990) AIAA Paper No, 
90-0160. AIAA, Washington, D.C. 

[14]   Clemens, N. T, Paul, P. H. & Mungal, M. G. (1992) private communication. 

[15] Mell, W. E., Nilsen, V., Kosäly, G. & Riley, J. J. (1994) Investigation of closure 
models for nonpremixed turbulent reacting flows; Phys. Fluids 6, 1331-1356. 

[16]   Burke, S. P., Schumann, T. E. (1928) Ind. Engng. Chem. 20, 998. 

134 



8.4-r Tl.85 

ft 

uo 

T2.3 

s 

2: 
M) o 

«■-3J 

Scalar mixing measurements for a Sc ~ 1 conserved scalar field, obtained in the self-similar far 
field of an axisymmetric turbulent jet at Re8 = 14,000. (top) The conserved scalar field £(x,t). 
(bottom) The associated two-dimensional scalar dissipation rate field loge %(x,t). Note that essen- 
tially all of the scalar dissipation field is organized into locally one-dimensional layer-like struc- 
tures being stretched and folded by the underlying velocity gradient field. 
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Fig. 2. Source conditions for turbulent hydrogen-air jet diffusion flames, showing 
depth of chemical nonequilibrium relative to the unpiloted blowout limit, given 
by u0/d0 = 1.67- 106 s_1. Solid line denotes conditions giving far-field hot flow 
Reynolds number Re = 14,000 corresponding to cold flow Re = 210,000. 
Dashed lines denote constant global Damköhler number (u0/d0 = const.) Shown 
are the conditions for three cases, giving (Case 1) the equilibrium limit, (Case 2) 
moderate nonequilibrium, and (Case 3) deep nonequilibrium. 
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Strained dissipation and reaction layer (SDRL) model results for OH mass fraction field YOH(x,t) in 
a hydrogen-air turbulent diffusion flame at x/L = 0.25 for Case 1 (top), Case 2 (middle), and Case 
3 (bottom), from the scalar mixing measurements in Fig. 1. Note the progression from thin "flamelet- 
like" OH zones near equilibrium (Case 1), to broad "distributed" OH zones with increasing depth 
of chemical nonequilibrium. 
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Strained dissipation and reaction layer (SDRL) model results for OH mass fraction field Y0H(x,t) in 
a hydrogen-air turbulent diffusion flame at x/L = 0.50 for Case 1 (top), Case 2 (middle), and Case 
3 (bottom), from the scalar mixing measurements in Fig. 1. Note the progression from thin "flamelet- 
like" OH zones near equilibrium (Case 1), to broad "distributed" OH zones with increasing chemi- 
cal nonequilibrium. 
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Strained dissipation and reaction layer (SDRL) model results for composite OH mass fraction fields Y0Jx,t) and the 
associated scatter plots for a hydrogen-air turbulent jet diffusion flame in the equilibrium limit (Case 1) at four downstream 
locations: x/L = 0.25,0.50,0.75, and 1.0. The solid curve in each of the scatter plots gives the equilibrium OH mass 
fraction distribution. 
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Strained dissipation and reaction layer (SDRL) model results for composite OH mass fraction fields Y0Jx,t) and the 
associated scatter plots for a hydrogen-air turbulent jet diffusion flame at moderate nonequilibrium (Case 2) conditions 
at four downstream locations: x/L = 0.25, 0.50, 0.75, and 1.0. The solid curve in each of the scatter plots gives the 
equilibrium OH mass fraction distribution. 
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Strained dissipation and reaction layer (SDRL) model results for composite OH mass fraction fields Y0Jx,t) and the 
associated scatter plots for a hydrogen-air turbulent jet diffusion flame at deep nonequilibrium (Case 3) conditions at 
four downstream locations: x/L = 0.25, 0.50, 0.75, and 1.0. The solid curve in each of the scatter plots gives the 
equilibrium OH mass fraction distribution. 
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Figure 8. DNS results of Mell et al (1994) for 5c = 1, homogeneous, decaying turbulence. For each case, the conserved 
scalar field, C,(x,t), is shown at the top, and the associated scalar energy dissipation field, V£V£(x,0, extracted from the 
full three-dimensional scalar gradient vector field is displayed on the bottom. 



Figure 9. Product mass fraction solution, YF(C,J)a*), for the one-dimensional advection-diffusion-reaction equation 
with chemical kinetics as described in (3) and (4) and pure fuel/pure air boundary conditions. 
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Figure 10. Product mass fraction field, Yp(x,f), results for large Damköhler number (near equilibrium chemistry), 
(a) Direct numerical simulation ofMellef al (1994). (b) Flame sheet approximation, (c) Laminar flamelet model, (d) 
SDRL formulation. 
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Figure 11. Product mass fraction field, Yp(x,t), results for moderate Damköhler number (substantial equilibrium chemistry 
departure), (a) Direct numerical simulation of Meile/a/(1994). (b) Flame sheet approximation, (c) Laminar flamelet 
model, (d) SDRL formulation. 
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Figure 12. Product mass fraction field, Yp(x,t), results for small Damköhler number (deep nonequilibrium chemistry), 
(a) Direct numerical simulation of Mell et al (1994). (b) Flame sheet approximation, (c) Laminar fiamelet model, 
(d) SDRL formulation. 
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Figure 13. Mean product concentration error versus global Damköhler number for each of the three models examined. 


